axon initial segment

轴突初始段
  • 文章类型: Journal Article
    轴突起始段(AIS)不仅构成动作电位起始位点,也是输出生成的活动相关调制的集线器。最近的研究揭示了AIS功能,主要使用事后方法,因为不存在健壮的小鼠体内活报道分子。这里,我们介绍了一个报告基因,其中AIS由Cre重组酶激活的Ankyrin-G-GFP融合蛋白内在标记,标记天然Ank3基因。使用共聚焦,超分辨率,和双光子显微镜以及体外全细胞膜片钳记录,离体,在体内,我们证实AIS的亚细胞支架和标记细胞的电生理参数保持不变。在这个模型系统中,我们进一步发现了随着网络活动的增加,AIS的快速重塑,以及在几周内AIS的体内标记高度可重复。这种新颖的报告线允许实时地对体内AIS调制和可塑性进行纵向研究,因此提供了一种独特的方法来研究广泛的应用中的亚细胞可塑性。
    The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo, and in vivo, we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体分布的变化是许多与年龄相关的神经退行性疾病的特征。在果蝇中,降低Cdk5的活性会导致神经变性表型,并且已知会影响几种线粒体特性。因此,我们研究了线粒体分布的改变是否与Cdk5相关的神经变性有关。我们发现,降低Cdk5活性不会改变线粒体定位的平衡蘑菇体的轴突神经元区室,果蝇大脑的学习和记忆中心。我们有,然而,观察轴突初始段(AIS)线粒体分布的变化,位于近端轴突的神经元区室,参与神经元极化和动作电位的启动。具体来说,我们观察到线粒体在野生型神经元中被部分排除在AIS之外,但是这种排除在Cdk5活性降低后就消失了,伴随着已知在这种情况下发生的AIS域的收缩。这种线粒体重新分布到AIS中不可能是由于AIS结构域本身的缩短,而是由于Cdk5活性的改变。此外,在Cdk5活性降低的情况下,线粒体再分布到AIS中不太可能是神经变性的早期驱动因素。
    Changes in mitochondrial distribution are a feature of numerous age-related neurodegenerative diseases. In Drosophila, reducing the activity of Cdk5 causes a neurodegenerative phenotype and is known to affect several mitochondrial properties. Therefore, we investigated whether alterations of mitochondrial distribution are involved in Cdk5-associated neurodegeneration. We find that reducing Cdk5 activity does not alter the balance of mitochondrial localization to the somatodendritic versus axonal neuronal compartments of the mushroom body, the learning and memory center of the Drosophila brain. We do, however, observe changes in mitochondrial distribution at the axon initial segment (AIS), a neuronal compartment located in the proximal axon involved in neuronal polarization and action potential initiation. Specifically, we observe that mitochondria are partially excluded from the AIS in wild-type neurons, but that this exclusion is lost upon reduction of Cdk5 activity, concomitant with the shrinkage of the AIS domain that is known to occur in this condition. This mitochondrial redistribution into the AIS is not likely due to the shortening of the AIS domain itself but rather due to altered Cdk5 activity. Furthermore, mitochondrial redistribution into the AIS is unlikely to be an early driver of neurodegeneration in the context of reduced Cdk5 activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    表达小白蛋白(PV)的抑制性中间神经元驱动伽马振荡(30-80Hz),这是更高的认知功能的基础。在这次审查中,我们讨论了PV中间神经元的基本特性的两组/方面。在第一组(称为轴突之前)中,我们列出了代表PV中间神经元中最佳突触整合的属性,旨在支持快速振荡。例如:[i]如果不参与快速PV介导的抑制,信息既不能进入也不能离开新皮质;[ii]PV中间神经元树突中的电压响应线性整合以减少传入驱动波动的影响;[iii]反向的体树突Rm梯度加速了突触电位到达体的时间进程。在第二组(称为轴突之后)中,我们列出了负责(a)短突触延迟的形态学和生物物理特性,和(b)有效的突触后结果。例如:[i]快速尖峰能力,允许PV中间神经元超过其他皮质神经元(锥体神经元)。[ii]有髓鞘的轴突(仅在中间神经元的PV子类中发现),以确保在初始轴突段的快速尖峰;和[iii]抑制性自适应-自抑制,这确保了短暂的双相电压瞬变并支持抑制后反弹。最近出现的科学工具,例如靶向PV细胞的病毒策略和通过体内行为成像监测PV细胞的能力,将有助于确定PV细胞在CNS中的作用。鉴于PV中间神经元和认知之间的联系,在未来,选择性地在PV+细胞类型中进行生理记录并表征精神病和神经系统疾病是否以及如何影响该皮质子电路中电信号的启动和传播将是有用的。电压成像可以允许同时快速记录来自许多PV+中间神经元的电信号。
    Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30-80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed Before Axon), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed After Axon), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses - autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们正在研究H反射操作条件的机制,一种简单的学习形式。文献中的建模研究和我们以前的数据表明,轴突初始段(AIS)的变化可能有所贡献。为了探索这个,我们使用盲法定量组织学和免疫组织化学方法在成年大鼠中研究了H反射调节对产生反射的脊髓运动神经元AIS的影响.成功,但并非不成功,H反射上调与AIS长度和与体细胞的距离更大有关;长度越大,H反射增加越大。文献中的模型研究表明,这些增加可能会增加运动神经元的兴奋性,支持它们可能有助于H反射增加的假设。上调不影响AIS锚蛋白G(AnkG)免疫反应性(IR),p-p38蛋白激酶IR,或GABA能终端。成功,但并非不成功,H反射向下调节与AIS上更多的GABA能终末相关,较弱的AnkG-IR,和更强的p-p38-IR。更多的GABA能终末和较弱的AnkG-IR与更大的H反射降低相关。这些变化可能会导致H反射降低的基础运动神经元放电阈值的正变化;它们与建模一致,表明钠通道变化可能是原因。H反射向下调节不影响AIS尺寸。AIS可塑性与H反射调节相关并可能有助于H反射调节的证据增加了运动学习涉及脊髓和大脑可塑性的证据。以及神经元和突触可塑性。脊髓运动神经元的AIS特性可能反映了共享这些运动神经元的所有运动技能的综合影响。关键点:神经元动作电位通常在轴突起始段(AIS)开始。AIS可塑性影响发育和疾病中的神经元兴奋性。在学习中是否这样做是未知的。脊髓反射的有效调节,一个简单的学习模型,改变大鼠脊髓运动神经元AIS。成功,但并非不成功,H反射上调与AIS长度和与体细胞的距离更大有关。成功,但并非不成功,下调与更多的AISGABA能终端相关,少了一点ankyrinG,和更多的p-p38蛋白激酶。AIS可塑性与成功的H反射调节之间的关联与AIS可塑性与发育和疾病的功能变化之间的关联一致。以及文献中建模研究预测的结果。运动学习改变脊髓和大脑中的神经元和突触。因为脊髓运动神经元是行为的最终共同途径,它们的AIS特性可能反映了使用这些运动神经元的所有行为的综合影响。
    We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在神经元中,微管(MT)细胞骨架构成了蛋白质从细胞体进出树突和轴突的长距离运输的基础。为了维持神经元的极性,轴突初始段(AIS)充当物理屏障,将轴突与树枝状区室分离,并充当轴突货物的过滤器。通过MT翻译后修饰的轴突富集进一步指示选择性贩运,影响MT动力学和运动蛋白的活性。这里,我们比较了缺乏MT酪氨酸化和去酪氨酸化各自酶的两个敲除小鼠系,发现两个敲除都导致AIS缩短。来自两系的神经元也显示轴突中存在的内溶酶体的固定分数增加,而移动细胞器在逆行方向显示缩短的运行距离。总的来说,我们的研究结果突出表明,对于适当的AIS长度和轴突运输过程,保持酪氨酸化和去酪氨酸化的MTs平衡的重要性.
    In neurons, the microtubule (MT) cytoskeleton forms the basis for long-distance protein transport from the cell body into and out of dendrites and axons. To maintain neuronal polarity, the axon initial segment (AIS) serves as a physical barrier, separating the axon from the somatodendritic compartment and acting as a filter for axonal cargo. Selective trafficking is further instructed by axonal enrichment of MT post-translational modifications, which affect MT dynamics and the activity of motor proteins. Here, we compared two knockout mouse lines lacking the respective enzymes for MT tyrosination and detyrosination, and found that both knockouts led to a shortening of the AIS. Neurons from both lines also showed an increased immobile fraction of endolysosomes present in the axon, whereas mobile organelles displayed shortened run distances in the retrograde direction. Overall, our results highlight the importance of maintaining the balance of tyrosinated and detyrosinated MTs for proper AIS length and axonal transport processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在各种神经元中,动作电位(AP)在近端轴突启动,在称为轴突初始部分(AIS)的区域内,其膜上具有高密度的电压门控钠通道(Navs)。在锥体神经元中,据报道,近端AIS表现出更高比例的具有“右移”到更多去极化电压的门控特性的Navs,与远端AIS相比。Further,最近的实验表明,随着神经元的发育,NaV亚型沿AIS的空间分布可以发生实质性变化,这表明神经元通过修改所述分布来调节其兴奋性。当神经元受到轴突刺激时,计算模型表明,AIS中门控特性的这种空间分离增强了AP向树突的反向传播。相比之下,在更自然的躯体刺激中,我们的模拟表明,相同的分布会阻碍反向传播,这表明,选择直行刺激与反行刺激可能会使有关NaV亚型在AIS中的作用的实验结果产生偏差甚至颠倒。我们在三个多室锥体细胞模型的AIS中实施了一系列假设的NaV分布,并研究了这种影响的精确动力学机制。随着NaV亚型的空间分布变化。用轴突刺激,近端NaV可用性占主导地位,这样在近端AIS中集中右移的Navs会促进反向传播。然而,通过躯体刺激,这些模型对可用性动力学不敏感。相反,AIS中右移位的NaV的较高激活阈值阻碍了反向传播。因此,最近观察到的AIS中NaV1.2和NaV1.6的空间分离和相对比例的发育变化差异影响激活和可用性。观察到的对反向传播的影响,并通过其在突触可塑性中的假定作用(例如,通过尖峰时间依赖性可塑性)进行潜在学习,正行刺激与反行刺激相反,这应该提供有关这些NaV亚型的发育调节的亚细胞定位的影响的假设。
    In a variety of neurons, action potentials (APs) initiate at the proximal axon, within a region called the axon initial segment (AIS), which has a high density of voltage-gated sodium channels (NaVs) on its membrane. In pyramidal neurons, the proximal AIS has been reported to exhibit a higher proportion of NaVs with gating properties that are \"right-shifted\" to more depolarized voltages, compared to the distal AIS. Further, recent experiments have revealed that as neurons develop, the spatial distribution of NaV subtypes along the AIS can change substantially, suggesting that neurons tune their excitability by modifying said distribution. When neurons are stimulated axonally, computational modelling has shown that this spatial separation of gating properties in the AIS enhances the backpropagation of APs into the dendrites. In contrast, in the more natural scenario of somatic stimulation, our simulations show that the same distribution can impede backpropagation, suggesting that the choice of orthodromic versus antidromic stimulation can bias or even invert experimental findings regarding the role of NaV subtypes in the AIS. We implemented a range of hypothetical NaV distributions in the AIS of three multicompartmental pyramidal cell models and investigated the precise kinetic mechanisms underlying such effects, as the spatial distribution of NaV subtypes is varied. With axonal stimulation, proximal NaV availability dominates, such that concentrating right-shifted NaVs in the proximal AIS promotes backpropagation. However, with somatic stimulation, the models are insensitive to availability kinetics. Instead, the higher activation threshold of right-shifted NaVs in the AIS impedes backpropagation. Therefore, recently observed developmental changes to the spatial separation and relative proportions of NaV1.2 and NaV1.6 in the AIS differentially impact activation and availability. The observed effects on backpropagation, and potentially learning via its putative role in synaptic plasticity (e.g. through spike-timing-dependent plasticity), are opposite for orthodromic versus antidromic stimulation, which should inform hypotheses about the impact of the developmentally regulated subcellular localization of these NaV subtypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    毒素AaH-II,蝎子AndroctonusaustralisHector毒液,是一种64个氨基酸的肽,其靶向电压门控Na+通道(VGNC)并减缓其失活。虽然在宏观细胞水平AaH-II延长动作电位(AP),对毒素在轴突初始片段(AIS)中的作用进行功能分析,VGNC高度表达,到目前为止从未表演过。这里,我们报告了AaH-II对小鼠脑片新皮层5锥体神经元AIS中AP生成的影响的原始分析。在确定AaH-II不区分Nav1.2和Nav1.6之后,即在该神经元中表达的两个VGNC同工型之间,我们确定7nM是最小的毒素浓度,在局部递送毒素后产生最小的可检测的体细胞AP变形。使用膜电位成像,我们发现,在这个最低浓度下,AaH-II大幅扩大了AIS中的AP。使用超快Na+成像,我们发现,局部应用7nMAaH-II会导致AIS中Na内流的较慢成分大量增加。最后,使用超快Ca2+成像,我们观察到7nMAaH-II通过可透Ca2+的VGNC产生虚假的缓慢Ca2+流入。靶向VGNC的分子,包括肽,被提议作为潜在的治疗工具。因此,AIS中的当前分析可以被认为是高分辨率成像技术如何揭示在宏观水平上无法观察到的药物作用的一般原理证明.
    The toxin AaH-II, from the scorpion Androctonus australis Hector venom, is a 64 amino acid peptide that targets voltage-gated Na+ channels (VGNCs) and slows their inactivation. While at macroscopic cellular level AaH-II prolongs the action potential (AP), a functional analysis of the effect of the toxin in the axon initial segment (AIS), where VGNCs are highly expressed, was never performed so far. Here, we report an original analysis of the effect of AaH-II on the AP generation in the AIS of neocortical layer-5 pyramidal neurons from mouse brain slices. After determining that AaH-II does not discriminate between Nav1.2 and Nav1.6, i.e. between the two VGNC isoforms expressed in this neuron, we established that 7 nM was the smallest toxin concentration producing a minimal detectable deformation of the somatic AP after local delivery of the toxin. Using membrane potential imaging, we found that, at this minimal concentration, AaH-II substantially widened the AP in the AIS. Using ultrafast Na+ imaging, we found that local application of 7 nM AaH-II caused a large increase in the slower component of the Na+ influx in the AIS. Finally, using ultrafast Ca2+ imaging, we observed that 7 nM AaH-II produces a spurious slow Ca2+ influx via Ca2+-permeable VGNCs. Molecules targeting VGNCs, including peptides, are proposed as potential therapeutic tools. Thus, the present analysis in the AIS can be considered a general proof-of-principle on how high-resolution imaging techniques can disclose drug effects that cannot be observed when tested at the macroscopic level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于它靠近轴突初始部分(AIS),第一髓鞘段的paranode可以影响动作电位的阈值以及神经元如何参与神经元回路。使用串行切片电子显微镜,我们检查了小鼠脊髓腹角的三维(3D)组织。出生后第18天小鼠的髓磷脂环类似于Ranvier节点的髓磷脂环。然而,在3个月大的老鼠身上,22个para-AIS中的13个显示4种类型的改变:(A)细胞质足过程,具有星形胶质细胞的超微结构特征,介于轴膜和髓鞘环之间。(B)在足突和轴突之间存在内舌的细延伸。(C)足突不存在。舌头的内部延伸部分是一个宽阔的薄片,从薄片中延伸出线圈并围绕轴突盘旋。(D)一组环与轴突相邻,另一个在后面,被致密的髓鞘覆盖。我们建议(A)-(C)是朝着(D)发展的步骤。在这一进程中,神经胶质过程取代了原来的循环,内舌重新激活并在脚部下方延伸,然后围绕轴突形成一组新的循环。这是对AIS处髓磷脂的3D组织的首次研究,并为该关键区域的神经胶质介导的年龄依赖性重塑提供了证据。
    Due to its proximity to the axon initial segment (AIS), the paranode of the first myelin segment can influence the threshold for action potentials and how a neuron participates in a neuronal circuit. Using serial section electron microscopy, we examined its three-dimensional (3D) organization in the ventral horn of the mouse spinal cord. The myelin loops of postnatal day 18 mice resemble those at the node of Ranvier. However, in 3-month-old mice, 13 of 22 para-AIS showed 4 types of alteration: (A) A cytoplasmic foot process, with ultrastructural characteristics of an astrocyte, was interposed between the axolemma and the myelin loops. (B) A thin extension of the inner tongue was present between the foot process and axolemma. (C) The foot process was absent. The inner tongue extension was a broad lamella from which a thin extension reached beyond the loops and spiraled around axon. (D) One set of loops was adjacent to the axon, and another was further back and underlain by compact myelin. We suggest that (A)-(C) are steps in a progression toward (D). In this progression, a glial process displaces the original loops, the inner tongue reactivates and extends beneath the foot process, then wraps around the axon to form a new set of loops. This is the first study of the 3D organization of myelin at the AIS and provides evidence for glia-mediated age-dependent remodeling at this critical region.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钠通道的功能障碍及其锚蛋白支架伴侣都与神经发育障碍有关,包括自闭症谱系障碍(ASD)。特别是,基因SCN2A,它编码钠通道NaV1.2和ANK2,它编码Anyrin-B,有很强的ASD协会。最近的研究表明,Scn2a中与ASD相关的单倍体不足会损害新皮质锥体细胞的树突兴奋性和突触功能,但NaV1.2如何锚定在树突区域是未知的。这里,我们表明,ankyrin-B对于将NaV1.2支架固定到小鼠新皮质神经元的树突膜至关重要,并且Ank2表型的单倍体功能不足会在Scn2a/-条件下观察到固有的树突兴奋性和突触缺陷。这些结果建立了一个直接的,两个主要ASD风险基因之间的融合联系,并加强了一个新兴的框架,表明新皮质锥体细胞树突状功能障碍可能导致神经发育障碍的病理生理学。
    Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    静态磁刺激(SMS)是一种非侵入性脑刺激形式,可改变神经活动并诱导神经可塑性,从而延长刺激期。这可以改变皮质脊髓的兴奋性或运动行为,这表明SMS可能会改变神经元的内在兴奋性。在哺乳动物神经元中,轴突初始段(AIS)是动作电位启动的部位,并经历结构可塑性(从体细胞的长度和位置变化),作为一种稳态机制,以抵消神经元活动的慢性变化。我们调查了SMS的慢性应用(6和48小时,0.5T)在出生后衍生的原代皮质神经元中诱导结构AIS可塑性。经过6小时的短信,与对照相比,我们观察到平均AIS长度缩短,在刺激后24小时持续存在。相比之下,SMS的48小时诱导了立即的远端移位,并在刺激后24小时持续存在。刺激期间电压门控L/T型钙通道的药理学阻断并不能阻止SMS诱导的AIS结构可塑性。我们的发现为扩大慢性SMS作为促进AIS可塑性的非侵入性方法的使用提供了基础。
    Static magnetic stimulation (SMS) is a form of non-invasive brain stimulation that alters neural activity and induces neural plasticity that outlasts the period of stimulation. This can modify corticospinal excitability or motor behaviours, suggesting that SMS may alter the intrinsic excitability of neurons. In mammalian neurons, the axon initial segment (AIS) is the site of action potential initiation and undergoes structural plasticity (changes in length and position from the soma) as a homeostatic mechanism to counteract chronic changes in neuronal activity. We investigated whether the chronic application of SMS (6 and 48 h, 0.5 T) induces structural AIS plasticity in postnatally derived primary cortical neurons. Following 6 h of SMS, we observed a shortening in mean AIS length compared to control, that persisted 24 h post stimulation. In contrast, 48 h of SMS induced an immediate distal shift that persisted 24 h post-stimulation. Pharmacological blockade of voltage gated L/T-type calcium channels during stimulation did not prevent SMS-induced AIS structural plasticity. Our findings provide the foundation to expand the use of chronic SMS as a non-invasive method to promote AIS plasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号