Wearable monitoring

可穿戴监测
  • 文章类型: Journal Article
    最近,可穿戴电子产品和小工具发展迅速,目的是赶上或超越人类皮肤感知外部世界信息的能力,如压力和应变。在这项研究中,首先用(3-氨基丙基)三乙氧基硅烷(APTES)处理纤维素纤维(模态纺织品)基材,然后用导电纳米复合材料覆盖,产生了仿生小体层。采用逐层(LBL)技术创建的触觉小体启发仿生(TCB)压阻传感器的三明治结构由压敏模块(仿生小体)组成,叉指电极(仿生感觉神经),和PU膜(仿生表皮)。氢键与偶联剂的协同机理有助于提高导电材料的粘接性能,从而提高了压敏性能。TCB传感器具有良好的灵敏度(1.0005kPa-1),宽线性传感范围(1700kPa),和一个快速的响应时间(40毫秒)。该传感器有望应用于广泛的可能应用,包括人体运动跟踪,可穿戴式检测系统,和纺织电子产品。
    Recently, wearable electronic products and gadgets have developed quickly with the aim of catching up to or perhaps surpassing the ability of human skin to perceive information from the external world, such as pressure and strain. In this study, by first treating the cellulosic fiber (modal textile) substrate with (3-aminopropyl) triethoxysilane (APTES) and then covering it with conductive nanocomposites, a bionic corpuscle layer is produced. The sandwich structure of tactile corpuscle-inspired bionic (TCB) piezoresistive sensors created with the layer-by-layer (LBL) technology consists of a pressure-sensitive module (a bionic corpuscle), interdigital electrodes (a bionic sensory nerve), and a PU membrane (a bionic epidermis). The synergistic mechanism of hydrogen bond and coupling agent helps to improve the adhesive properties of conductive materials, and thus improve the pressure sensitive properties. The TCB sensor possesses favorable sensitivity (1.0005 kPa-1), a wide linear sensing range (1700 kPa), and a rapid response time (40 ms). The sensor is expected to be applied in a wide range of possible applications including human movement tracking, wearable detection system, and textile electronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可穿戴湿度传感器吸引了人们的注意力,因为它们可以通过进行活动跟踪和空气质量评估来实时监测重要的生理信息。在二维(2D)材料中,氧化石墨烯(GO)由于其可调节的表面化学而对湿度传感非常有吸引力,高表面积,在水中的可加工性和易于集成到柔性基材上。然而,大滞后,低灵敏度和强交叉灵敏度的问题限制了GO在实际应用中的使用,连续监测是首选。在这里,我们展示了一个可穿戴和无线阻抗为基础的湿度传感器与芘功能化的六方氮化硼(h-BN)纳米片,这表明对相对湿度的敏感性增强,RH(>1010欧姆/%RH,范围从5%到100%RH),快速响应(0.1ms),在25-60°C的范围内没有明显的滞后和交叉敏感性。我们最后证明了基于h-BN的传感器能够监测呼气和吸气的整个呼吸周期过程,因此能够实时记录与不同日常活动相关的呼吸信号的细微变化以及流感的各种症状,不需要与个人直接接触。本文受版权保护。保留所有权利。
    Wearable humidity sensors are attracting strong attention as they allow for real-time and continuous monitoring of important physiological information by enabling activity tracking as well as air quality assessment. Amongst 2Dimensional (2D) materials, graphene oxide (GO) is very attractive for humidity sensing due to its tuneable surface chemistry, high surface area, processability in water, and easy integration onto flexible substrates. However, strong hysteresis, low sensitivity, and cross-sensitivity issues limit the use of GO in practical applications, where continuous monitoring is preferred. Herein, a wearable and wireless impedance-based humidity sensor made with pyrene-functionalized hexagonal boron nitride (h-BN) nanosheets is demonstrated. The device shows enhanced sensitivity towards relative humidity (RH) (>1010 Ohms/%RH in the range from 5% to 100% RH), fast response (0.1 ms), no appreciable hysteresis, and no cross-sensitivity with temperature in the range of 25-60 °C. The h-BN-based sensor is able to monitor the whole breathing cycle process of exhaling and inhaling, hence enabling to record in real-time the subtlest changes of respiratory signals associated with different daily activities as well as various symptoms of flu, without requiring any direct contact with the individual.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    感测特定目标的浓度并产生特定信号输出的生物传感器已成为生物分析的重要技术。最近,智能生物传感器由于其满足复杂需求的适应性而受到了极大的关注。在合成生物学中开发标准模块和载体的进展已经揭示了智能生物传感器,这些传感器可以实现先进的分析处理以更好地适应实际应用。这篇综述的重点是智能合成生物学启用的生物传感器(SBB)。首先,我们说明了具有计算能力的智能SBB的最新进展,内存存储,和自校准。然后,我们讨论了SBB在即时检测(POCT)和可穿戴监测中的新兴应用。最后,提出了智能SBB的未来观点。
    Biosensors that sense the concentration of a specified target and produce a specific signal output have become important technology for biological analysis. Recently, intelligent biosensors have received great interest due to their adaptability to meet sophisticated demands. Advances in developing standard modules and carriers in synthetic biology have shed light on intelligent biosensors that can implement advanced analytical processing to better accommodate practical applications. This review focuses on intelligent synthetic biology-enabled biosensors (SBBs). First, we illustrate recent progress in intelligent SBBs with the capability of computation, memory storage, and self-calibration. Then, we discuss emerging applications of SBBs in point-of-care testing (POCT) and wearable monitoring. Finally, future perspectives on intelligent SBBs are proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为重要的生物标志物,葡萄糖在多种生理和病理过程中起着重要作用。因此,葡萄糖检测已成为电化学分析领域的一个重要方向。为了实现更方便,实时,舒适和准确的监测,基于智能手机的便携式,可穿戴和可植入的电化学葡萄糖监测正在迅速发展。在这次审查中,我们首先介绍了集成在智能手机中的技术以及这些技术在电化学葡萄糖检测中的优势。随后,这个概述说明了基于智能手机的便携式,在过去的十年(2012-2022)中,各种生物流体中的可穿戴和可植入电化学葡萄糖监测系统。具体来说,强调了一些有趣和创新的技术。在最后一节,在讨论了这一领域的挑战之后,我们提供一些未来的方向,例如先进纳米材料的应用,新颖的电源,同时检测多个标记和闭环系统。
    As a vital biomarker, glucose plays an important role in multiple physiological and pathological processes. Thus, glucose detection has become an important direction in the electrochemical analysis field. In order to realize more convenient, real-time, comfortable and accurate monitoring, smartphone-based portable, wearable and implantable electrochemical glucose monitoring is progressing rapidly. In this review, we firstly introduce technologies integrated in smartphones and the advantages of these technologies in electrochemical glucose detection. Subsequently, this overview illustrates the advances of smartphone-based portable, wearable and implantable electrochemical glucose monitoring systems in diverse biofluids over the last ten years (2012-2022). Specifically, some interesting and innovative technologies are highlighted. In the last section, after discussing the challenges in this field, we offer some future directions, such as application of advanced nanomaterials, novel power sources, simultaneous detection of multiple markers and a closed-loop system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于MXene的复合导电气凝胶由于其有效的3D网络微结构和MXene的优异导电性而被广泛研究作为可穿戴压力传感器的敏感材料。在这项工作中,我们利用Cu辅助电凝胶法制备了3D多孔Ti3C2TxMXene/聚(3,4-亚乙基二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)复合气凝胶(MPCA),具有可控的图案化性能。制备的复合气凝胶可以组装成用于可穿戴物理监测的压力传感器和用于机器人触觉感测的高分辨率传感器微阵列。MXene和PEDOT:PSS之间的多相互作用使MPCA具有稳定的3D导电网络,这因此增强了MPCA的机械灵活性和压阻特性。因此,制造的压力传感器显示高灵敏度(在0-2kPa内26.65kPa-1),快速响应能力(106ms),和优异的稳定性可以进一步应用于可穿戴物理监测。此外,由于电凝胶制备方法的可控图案化特性,一个高分辨率的压力传感器微阵列被成功地制备成一个人工触觉接口,它可以附着在机器人指尖上,直接识别来自人类手指的触觉刺激,并识别像人类手指一样的盲文字母。拟议的MPCA,具有非凡的综合性能,特别是高度敏感的传感性能和可控的图案特性,展示了对可穿戴电子产品的巨大优势和巨大潜力。
    MXene based composite conductive aerogels have been extensively investigated as sensitive materials for wearable pressure sensors owing to their effective 3D network microstructures and the excellent conductivity of MXene. In this work, we fabricated a 3D porous Ti3C2Tx MXene/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite aerogel (MPCA) with a controllable patterning property utilizing the Cu-assisted electrogelation method. The prepared composite aerogel can be assembled into pressure sensors for wearable physical monitoring and high-resolution sensor microarrays for robotic tactile sensing. The multi-interactions between MXene and PEDOT:PSS enable the MPCA to have a stable 3D conductive network, which consequently enhances both the mechanical flexibility and the piezoresistive property of the MPCA. Thus, the fabricated pressure sensor demonstrating high sensitivity (26.65 kPa-1 within 0-2 kPa), fast response ability (106 ms), and excellent stability can be further applied for wearable physical monitoring. Moreover, due to the controllable patterning property of the electrogelation preparation method, a high-resolution pressure sensor microarray was successfully prepared as an artificial tactile interface, which can be attached to a robotic fingertip to directly recognize the tactile stimuli from human fingers and identify braille letters like human fingers. The proposed MPCA, endowed with a remarkable comprehensive property, particularly the highly sensitive sensing performance and controllable patterning property, demonstrates an enormous advantage and a great potentiality toward wearable electronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号