关键词: Bionic structure Cellulosic fiber High sensitivity Textile electronics Wearable monitoring

Mesh : Humans Wearable Electronic Devices Electronics Nanocomposites / chemistry Textiles Silanes

来  源:   DOI:10.1016/j.jcis.2024.01.059

Abstract:
Recently, wearable electronic products and gadgets have developed quickly with the aim of catching up to or perhaps surpassing the ability of human skin to perceive information from the external world, such as pressure and strain. In this study, by first treating the cellulosic fiber (modal textile) substrate with (3-aminopropyl) triethoxysilane (APTES) and then covering it with conductive nanocomposites, a bionic corpuscle layer is produced. The sandwich structure of tactile corpuscle-inspired bionic (TCB) piezoresistive sensors created with the layer-by-layer (LBL) technology consists of a pressure-sensitive module (a bionic corpuscle), interdigital electrodes (a bionic sensory nerve), and a PU membrane (a bionic epidermis). The synergistic mechanism of hydrogen bond and coupling agent helps to improve the adhesive properties of conductive materials, and thus improve the pressure sensitive properties. The TCB sensor possesses favorable sensitivity (1.0005 kPa-1), a wide linear sensing range (1700 kPa), and a rapid response time (40 ms). The sensor is expected to be applied in a wide range of possible applications including human movement tracking, wearable detection system, and textile electronics.
摘要:
最近,可穿戴电子产品和小工具发展迅速,目的是赶上或超越人类皮肤感知外部世界信息的能力,如压力和应变。在这项研究中,首先用(3-氨基丙基)三乙氧基硅烷(APTES)处理纤维素纤维(模态纺织品)基材,然后用导电纳米复合材料覆盖,产生了仿生小体层。采用逐层(LBL)技术创建的触觉小体启发仿生(TCB)压阻传感器的三明治结构由压敏模块(仿生小体)组成,叉指电极(仿生感觉神经),和PU膜(仿生表皮)。氢键与偶联剂的协同机理有助于提高导电材料的粘接性能,从而提高了压敏性能。TCB传感器具有良好的灵敏度(1.0005kPa-1),宽线性传感范围(1700kPa),和一个快速的响应时间(40毫秒)。该传感器有望应用于广泛的可能应用,包括人体运动跟踪,可穿戴式检测系统,和纺织电子产品。
公众号