Single molecule

单分子
  • 文章类型: Journal Article
    我们提出了一种基于基于连接的识别和原位扩增的直接mRNA检测的强大方法,能够以单核苷酸和单分子分辨率对mRNA进行单细胞成像。归因于使用可以将挂锁探针与RNA作为靶模板连接的夹板R连接酶,这种方法可以在没有逆转录的情况下有效地检测mRNA。该方法能够对单细胞中的基因表达进行空间定位和相关性分析,这有助于我们阐明基因功能和调控机制。
    We present a powerful method for direct mRNA detection based on ligation-based recognition and in situ amplification, capable of single-cell imaging mRNA at single-nucleotide and single-molecule resolution. Attributed to the use of Splint R ligase that can ligate padlock probe with RNA as target template, this method can efficiently detect mRNA in the absence of reverse transcription. This method enables spatial localization and correlation analysis of gene expression in single cells, which helps us to elucidate gene function and regulatory mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电化学发光(ECL)正迅速从分析方法发展成为光学显微镜。电化学触发器和光学读出的正交性将其与经典的显微镜和电化学技术区分开来,由于其接近零的背景,非凡的灵敏度,没有光漂白和光毒性。在这次审查中,我们总结了ECL成像技术的最新进展,通过增加生物测定的复杂性和多路复用,强调能够对生物实体进行成像和改善分析特性的原始配置。此外,绘制空间中的(电)化学反应性图提供了有关纳米材料的宝贵信息,并有助于破译ECL机制,以改善其在诊断和(电)催化中的性能。最后,我们强调了最近在单分子极限成像方面的成就,单光子或单一化学反应,以及当前将ECL成像进展转化为材料科学等其他领域的挑战,催化和生物学。
    Electrochemiluminescence (ECL) is rapidly evolving from an analytical method into an optical microscopy. The orthogonality of the electrochemical trigger and the optical readout distinguishes it from classic microscopy and electrochemical techniques, owing to its near-zero background, remarkable sensitivity, and absence of photobleaching and phototoxicity. In this minireview, we summarize the recent advances in ECL imaging technology, emphasizing original configurations which enable the imaging of biological entities and the improvement of the analytical properties by increasing the complexity and multiplexing of bioassays. Additionally, mapping the (electro)chemical reactivity in space provides valuable information on nanomaterials and facilitates deciphering ECL mechanisms for improving their performances in diagnostics and (electro)catalysis. Finally, we highlight the recent achievements in imaging at the ultimate limits of single molecules, single photons or single chemical reactions, and the current challenges to translate the ECL imaging advances to other fields such as material science, catalysis and biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    质膜(PM)相关脱落酸(ABA)信号转导是ABA信号的重要组成部分。已报道C2结构域ABA相关(CAR)蛋白在将ABA受体PYR1/PYL/RCAR(PYL)募集到PM中起关键作用。然而,CAR蛋白参与膜界定的ABA信号转导的分子细节仍不清楚.例如,此响应过程发生的位置,以及PYL以外的任何其他成员是否参与此信令过程。这里,所有拟南芥CAR成员的GUS标记材料用于全面可视化CAR家族基因的广泛表达模式。基于CAR1响应ABA的代表性,我们决定将其作为目标来研究CAR蛋白在PM相关ABA信号传导中的功能。单粒子示踪表明ABA影响CAR1的时空动力学。ABA的存在延长了CAR1在膜上的停留时间,并显示出更快的横向迁移率。令人惊讶的是,我们验证了CAR1可以在整体和单分子水平上直接招募对ABA1(HAB1)和SNF1相关蛋白激酶2.2(SnRK2.2)过敏的PM。此外,CAR1的PM定位被证明与膜微结构域有关。总的来说,我们的研究表明,CAR将ABA信号的三个主要成分招募到PM,以对ABA做出积极反应。本研究加深了我们对ABA信号转导的理解。
    Plasma membrane (PM)-associated abscisic acid (ABA) signal transduction is an important component of ABA signaling. The C2-domain ABA-related (CAR) proteins have been reported to play a crucial role in recruiting ABA receptor PYR1/PYL/RCAR (PYLs) to the PM. However, the molecular details of the involvement of CAR proteins in membrane-delimited ABA signal transduction remain unclear. For instance, where this response process takes place and whether any additional members besides PYL are taking part in this signaling process. Here, the GUS-tagged materials for all Arabidopsis CAR members were used to comprehensively visualize the extensive expression patterns of the CAR family genes. Based on the representativeness of CAR1 in response to ABA, we determined to use it as a target to study the function of CAR proteins in PM-associated ABA signaling. Single-particle tracking showed that ABA affected the spatiotemporal dynamics of CAR1. The presence of ABA prolonged the dwell time of CAR1 on the membrane and showed faster lateral mobility. Surprisingly, we verified that CAR1 could directly recruit hypersensitive to ABA1 (HAB1) and SNF1-related protein kinase 2.2 (SnRK2.2) to the PM at both the bulk and single-molecule levels. Furthermore, PM localization of CAR1 was demonstrated to be related to membrane microdomains. Collectively, our study revealed that CARs recruited the three main components of ABA signaling to the PM to respond positively to ABA. This study deepens our understanding of ABA signal transduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单分子荧光原位杂交(smFISH)代表了用于临床组织样品中核酸生物标志物定量分析的有前途的方法。然而,在福尔马林固定石蜡包埋(FFPE)组织标本中使用基于smFISH的RNA成像时,低信号强度和高背景噪声是诊断病理学引起的并发症.此外,相关的复杂程序可能会产生不确定的结果和较差的图像质量。在这里,通过将分裂DNA探针的高特异性与ZnCdSe/ZnS量子点(QD)标记的高信号读出相结合,我们介绍QDsplit-FISH,高亮度smFISH技术,定量乳腺癌和肺鳞癌细胞系和临床FFPE组织样本中mRNA的表达。由于其高信噪比,QD分裂-FISH是一个快速,便宜,和定量FFPE肿瘤组织中mRNA表达的灵敏方法,使其适用于生物标志物成像和诊断病理学。
    Single-molecule fluorescence in situ hybridization (smFISH) represents a promising approach for the quantitative analysis of nucleic acid biomarkers in clinical tissue samples. However, low signal intensity and high background noise are complications that arise from diagnostic pathology when performed with smFISH-based RNA imaging in formalin-fixed paraffin-embedded (FFPE) tissue specimens. Moreover, the associated complex procedures can produce uncertain results and poor image quality. Herein, by combining the high specificity of split DNA probes with the high signal readout of ZnCdSe/ZnS quantum dot (QD) labeling, we introduce QD split-FISH, a high-brightness smFISH technology, to quantify the expression of mRNA in both cell lines and clinical FFPE tissue samples of breast cancer and lung squamous carcinoma. Owing to its high signal-to-noise ratio, QD split-FISH is a fast, inexpensive, and sensitive method for quantifying mRNA expression in FFPE tumor tissues, making it suitable for biomarker imaging and diagnostic pathology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    G-四链体(G4)是一种四链非规范DNA结构,长期以来一直被认为是DNA复制的潜在障碍。然而,复制体如何有效地处理G4s以避免复制失败仍然不清楚。这里,使用单分子和集成方法,检查噬菌体T7复制体与位于前导链或滞后链上的分子内G4之间碰撞的结果。发现G4形成诱导的相邻叉连接引起T7DNA聚合酶(DNAP)的结合。除G4外,这些不活跃的DNAP还存在不可逾越的障碍,阻碍DNA合成的进展。然而,T7解旋酶可以拆除它们并解决滞后链G4s,为复制叉的发展铺平了道路。此外,在单链DNA结合蛋白(SSB)gp2.5的帮助下,T7解旋酶也能够在未折叠状态下维持前导链G4结构,允许一小部分T7DNAP通过合成而不会崩溃。这些发现拓宽了复制解旋酶的功能库,并强调了复制体固有的G4耐受性。
    G-quadruplex (G4) is a four-stranded noncanonical DNA structure that has long been recognized as a potential hindrance to DNA replication. However, how replisomes effectively deal with G4s to avoid replication failure is still obscure. Here, using single-molecule and ensemble approaches, the consequence of the collision between bacteriophage T7 replisome and an intramolecular G4 located on either the leading or lagging strand is examined. It is found that the adjacent fork junctions induced by G4 formation incur the binding of T7 DNA polymerase (DNAP). In addition to G4, these inactive DNAPs present insuperable obstacles, impeding the progression of DNA synthesis. Nevertheless, T7 helicase can dismantle them and resolve lagging-strand G4s, paving the way for the advancement of the replication fork. Moreover, with the assistance of the single-stranded DNA binding protein (SSB) gp2.5, T7 helicase is also capable of maintaining a leading-strand G4 structure in an unfolded state, allowing for a fraction of T7 DNAPs to synthesize through without collapse. These findings broaden the functional repertoire of a replicative helicase and underscore the inherent G4 tolerance of a replisome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    α-突触核蛋白(α-Syn)是一种突触前蛋白,与帕金森氏病和其他神经退行性疾病有关,并与带负电荷的磷脂结合。以前,我们报道了α-Syn聚集模拟突触小泡的合成蛋白脂质体。这种囊泡聚集活性取决于α-Syn与阴离子磷脂的特定相互作用。这里,我们报道α-Syn令人惊讶地还与中性磷脂溶血磷脂酰胆碱(lysoPC)相互作用。即使在没有阴离子脂质的情况下,lysoPC促进α-Syn诱导的囊泡聚集,但在单个囊泡-囊泡融合分析中对Ca2触发的融合没有影响。导致家族性帕金森病的α-Syn的A30P突变体对lysoPC的亲和力降低,并且不诱导囊泡聚集。一起来看,α-Syn-lysoPC相互作用可能在α-Syn功能中起作用。
    α-synuclein (α-Syn) is a presynaptic protein that is involved in Parkinson\'s and other neurodegenerative diseases and binds to negatively charged phospholipids. Previously, we reported that α-Syn clusters synthetic proteoliposomes that mimic synaptic vesicles. This vesicle-clustering activity depends on a specific interaction of α-Syn with anionic phospholipids. Here, we report that α-Syn surprisingly also interacts with the neutral phospholipid lysophosphatidylcholine (lysoPC). Even in the absence of anionic lipids, lysoPC facilitates α-Syn-induced vesicle clustering but has no effect on Ca2+-triggered fusion in a single vesicle-vesicle fusion assay. The A30P mutant of α-Syn that causes familial Parkinson disease has a reduced affinity to lysoPC and does not induce vesicle clustering. Taken together, the α-Syn-lysoPC interaction may play a role in α-Syn function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单细胞多组学技术已广泛应用于检测细胞的关键特征。这些方法实现了单分子分辨率,甚至可以揭示空间定位。这些新兴的方法提供了阐明基因组特征的见解,单个细胞的表观基因组和转录组异质性。然而,它们在数据处理中带来了新的计算挑战。这里,我们描述了单细胞单分子多重组学管道(ScSmOP),条形码索引的单细胞单分子多组学数据分析的通用管道。本质上,在ScSmOP中使用C语言,根据基于连接的条形码数据和基于合成的条形码数据,建立基于间隔种子哈希表的条形码识别算法,其次是数据映射和反卷积。我们在单细胞组学数据的综合分析中证明了ScSmOP和已发表的管道之间的数据处理的高可重复性(scRNA-seq,scATAC-seq,scARC-seq),单分子染色质相互作用数据(ChIA-Drop,SPRITE,RD-SPRITE),单细胞单分子染色质相互作用数据(scSPRITE)和来自各种细胞类型和物种的空间转录组数据。此外,ScSmOP显示更快速的性能,是一种多功能的,高效,易于使用和强大的管道,用于单细胞单分子多组学数据分析。
    Single-cell multiomics techniques have been widely applied to detect the key signature of cells. These methods have achieved a single-molecule resolution and can even reveal spatial localization. These emerging methods provide insights elucidating the features of genomic, epigenomic and transcriptomic heterogeneity in individual cells. However, they have given rise to new computational challenges in data processing. Here, we describe Single-cell Single-molecule multiple Omics Pipeline (ScSmOP), a universal pipeline for barcode-indexed single-cell single-molecule multiomics data analysis. Essentially, the C language is utilized in ScSmOP to set up spaced-seed hash table-based algorithms for barcode identification according to ligation-based barcoding data and synthesis-based barcoding data, followed by data mapping and deconvolution. We demonstrate high reproducibility of data processing between ScSmOP and published pipelines in comprehensive analyses of single-cell omics data (scRNA-seq, scATAC-seq, scARC-seq), single-molecule chromatin interaction data (ChIA-Drop, SPRITE, RD-SPRITE), single-cell single-molecule chromatin interaction data (scSPRITE) and spatial transcriptomic data from various cell types and species. Additionally, ScSmOP shows more rapid performance and is a versatile, efficient, easy-to-use and robust pipeline for single-cell single-molecule multiomics data analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    测量分子结合动力学是分子相互作用分析中最重要的任务之一。表面等离子体共振(SPR)是用于分析分子结合的流行工具。等离子体散射显微镜(PSM)是一种新开发的SPR成像技术,它可以检测分析物对表面等离子体的平面外散射,并将无标记SPR成像的检测极限降低到单蛋白质水平。此外,PSM还允许具有高时空分辨率的SPR成像,使得分析细胞对分子结合的反应成为可能。在这个迷你评论中,我们提出PSM作为化学和生物成像的一种选择方法,介绍其理论机制,介绍其实验方案,总结其令人兴奋的应用,并讨论其挑战以及充满希望的未来。
    Measuring molecular binding kinetics represents one of the most important tasks in molecular interaction analysis. Surface plasmon resonance (SPR) is a popular tool for analyzing molecular binding. Plasmonic scattering microscopy (PSM) is a newly developed SPR imaging technology, which detects the out-of-plane scattering of surface plasmons by analytes and has pushed the detection limit of label-free SPR imaging down to a single-protein level. In addition, PSM also allows SPR imaging with high spatiotemporal resolution, making it possible to analyze cellular response to the molecular bindings. In this Mini Review, we present PSM as a method of choice for chemical and biological imaging, introduce its theoretical mechanism, present its experimental schemes, summarize its exciting applications, and discuss its challenges as well as the promising future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在分子水平上检测疾病有助于早期诊断和治疗。然而,传统的免疫学检测技术,如酶联免疫吸附测定(ELISA)和化学发光,检测灵敏度在10-16和10-12mol/L之间,不足以进行早期诊断。单分子免疫测定可以达到10-18mol/L的检测灵敏度,并且可以检测使用常规检测技术难以测量的生物标志物。它可以将待检测的分子限制在较小的空间区域中,并提供检测信号的绝对计数,提供高效率和准确性的优势。在这里,我们展示了两种单分子免疫分析技术的原理和设备,并讨论了它们的应用。结果表明,与常见的化学发光或ELISA测定相比,检测灵敏度可以提高2-3个数量级。基于微阵列的单分子免疫测定技术可以在1小时内测试66个样品,比传统的免疫检测技术更有效。相比之下,基于微滴的单分子免疫测定技术可以在10分钟内产生107个液滴,比单个液滴发生器快100倍以上。通过比较两种单分子免疫测定技术,我们强调我们个人对即时医疗应用目前的局限性和未来发展趋势的看法。
    Detecting diseases at the molecular level aids in early diagnosis and treatment. However, traditional immunological detection techniques, such as enzyme-linked immunosorbent assay (ELISA) and chemiluminescence, have detection sensitivities between 10-16 and 10-12 mol/L, which are inadequate for early diagnosis. Single-molecule immunoassays can reach detection sensitivities of 10-18 mol/L and can detect biomarkers that are difficult to measure using conventional detection techniques. It can confine molecules to be detected in a small spatial area and provide absolute counting of the detected signal, offering the advantage of high efficiency and accuracy. Herein, we demonstrate the principles and equipment of two single-molecule immunoassay techniques and discuss their applications. It is shown that the detection sensitivity can be improved by 2-3 orders of magnitude compared to common chemiluminescence or ELISA assays. The microarray-based single-molecule immunoassay technique can test 66 samples in 1 h, which is more efficient than conventional immunological detection techniques. In contrast, microdroplet-based single-molecule immunoassay techniques can generate 107 droplets in 10 min, which is more than 100 times faster than a single droplet generator. By comparing the two single-molecule immunoassay techniques, we highlight our personal perspectives on the current limitations of point-of-care applications and future development trends.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞膜是复杂的多组分结构,与许多基本的细胞过程有关,如物质运输,能量转换,信号转导,机械传感,细胞粘附等。然而,由于细胞膜的复杂和动态特性,长期以来很难在单分子水平上进行研究。在过去的几十年里,生物物理成像技术,如原子力显微镜和超分辨率荧光显微镜,已经发展到以前所未有的分辨率研究生物结构,使研究人员能够分析膜蛋白的组成和分布,并在单细胞/分子水平监测其特定功能。在这次审查中,我们基于最新的生物物理技术强调细胞膜的结构和功能。此外,我们描述了基于力的检测技术的最新进展,它可以深入了解动态事件并定量监测活细胞中跨膜运输的动力学参数。
    Cell membranes are complicated multicomponent structures, related to many basic cellular processes, such as substance transporting, energy conversion, signal transduction, mechanosensing, cell adhesion and so on. However, cell membranes have long been difficult to study at a single-molecule level due to their complex and dynamic properties. During the last decades, biophysical imaging techniques, such as atomic force microscopy and super-resolution fluorescent microscopy, have been developed to study biological structures with unprecedented resolution, enabling researchers to analyze the composition and distribution of membrane proteins and monitor their specific functions at single cell/molecule level. In this review, we highlight the structure and functions of cell membranes based on up-to-date biophysical techniques. Additionally, we describe the recent advances in force-based detecting technology, which allow insight into dynamic events and quantitativelymonitoring kinetic parameters for trans-membrane transporting in living cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号