PAK

PAK
  • 文章类型: Journal Article
    成肌细胞分化对骨骼肌肌纤维的形成至关重要。Profilin1(Pfn1)已被鉴定为肌动蛋白相关蛋白,并已被证明对细胞功能至关重要。我们之前的研究发现,PFN1可能抑制牛骨骼肌卫星细胞的分化,但潜在的机制尚不清楚。这里,我们证实PFN1负调控牛骨骼肌卫星细胞的成肌分化。免疫沉淀结合质谱分析显示Cdc42是PFN1的结合蛋白。Cdc42可被PFN1激活,并能像PFN1一样抑制成肌分化。机械上,激活的Cdc42增加了p2l激活的激酶(PAK)的磷酸化水平,进一步激活c-Jun氨基末端激酶(JNK)的磷酸化活性,而PAK和JNK是肌源性分化的抑制剂。一起来看,我们的结果表明,PFN1是牛成肌分化的阻遏物,并提供监管机制。
    Myoblast differentiation is essential for the formation of skeletal muscle myofibers. Profilin1 (Pfn1) has been identified as an actin-associated protein, and has been shown to be critically important to cellular function. Our previous study found that PFN1 may inhibit the differentiation of bovine skeletal muscle satellite cells, but the underlying mechanism is not known. Here, we confirmed that PFN1 negatively regulated the myogenic differentiation of bovine skeletal muscle satellite cells. Immunoprecipitation assay combined with mass spectrometry showed that Cdc42 was a binding protein of PFN1. Cdc42 could be activated by PFN1 and could inhibit the myogenic differentiation like PFN1. Mechanistically, activated Cdc42 increased the phosphorylation level of p2l-activated kinase (PAK), which further activated the phosphorylation activity of c-Jun N-terminal kinase (JNK), whereas PAK and JNK are inhibitors of myogenic differentiation. Taken together, our results reveal that PFN1 is a repressor of bovine myogenic differentiation, and provide the regulatory mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Metastasis is a major cause of death in patients with colorectal cancer (CRC). Cysteine-rich protein 2 (CSRP2) has been recently implicated in the progression and metastasis of a variety of cancers. However, the biological functions and underlying mechanisms of CSRP2 in the regulation of CRC progression are largely unknown. Methods: Immunohistochemistry, quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB) were used to detect the expression of CSRP2 in CRC tissues and paracancerous tissues. CSRP2 function in CRC was determined by a series of functional tests in vivo and in vitro. WB and immunofluorescence were used to determine the relation between CSRP2 and epithelial-mesenchymal transition (EMT). Co-immunoprecipitation and scanning electron microscopy were used to study the molecular mechanism of CSRP2 in CRC. Results: The CSRP2 expression level in CRC tissues was lower than in adjacent normal tissues and indicated poor prognosis in CRC patients. Functionally, CSRP2 could suppress the proliferation, migration, and invasion of CRC cells in vitro and inhibit CRC tumorigenesis and metastasis in vivo. Mechanistic investigations revealed a physical interaction between CSRP2 and p130Cas. CSRP2 could inhibit the activation of Rac1 by preventing the phosphorylation of p130Cas, thus activating the Hippo signaling pathway, and simultaneously inhibiting the ERK and PAK/LIMK/cortactin signaling pathways, thereby inhibiting the EMT and metastasis of CRC. Rescue experiments showed that blocking the p130Cas and Rac1 activation could inhibit EMT induced by CSRP2 silencing. Conclusion: Our results suggest that the CSRP2/p130Cas/Rac1 axis can inhibit CRC aggressiveness and metastasis through the Hippo, ERK, and PAK signaling pathways. Therefore, CSRP2 may be a potential therapeutic target for CRC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    PAKs, p21-activated kinases, play central roles and act as converging junctions for discrete signals elicited on the cell surface and for a number of intracellular signaling cascades. PAKs phosphorylate a vast number of substrates and act by remodeling cytoskeleton, employing scaffolding, and relocating to distinct subcellular compartments. PAKs affect wide range of processes that are crucial to the cell from regulation of cell motility, survival, redox, metabolism, cell cycle, proliferation, transformation, stress, inflammation, to gene expression. Understandably, their dysregulation disrupts cellular homeostasis and severely impacts key cell functions, and many of those are implicated in a number of human diseases including cancers, neurological disorders, and cardiac disorders. Here we provide an overview of the members of the PAK family and their current status. We give special emphasis to PAK1 and PAK4, the prototypes of groups I and II, for their profound roles in cancer, the nervous system, and the heart. We also highlight other family members. We provide our perspective on the current advancements, their growing importance as strategic therapeutic targets, and our vision on the future of PAKs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Preeclampsia (PE) and its complications have become the leading cause of maternal and fetal morbidity and mortality in the world. And the development of PE is still barely predictable and thus challenging to prevent and manage clinically. Oxidative stress contributes to the development of the disease. Our previous study demonstrated that exogenous Alpha-1 antitrypsin (AAT) played a cytoprotective role in vascular endothelial cell by suppressing oxidative stress. In this study, we aim to investigate whether AAT contributes to the development of PE, and to identify the mechanism behind these effects. We found that AAT levels were significantly decreased in placenta tissues from women with PE compared that of healthy women. Notably, we demonstrate that AAT injection is able to relieve the high blood pressure and reduce urine protein levels in a dose-dependent manner in PE mice. In addition, our results showed that AAT injection exhibited an anti-oxidative stress role by significantly reducing PE mediated-upregulation of ROS, MMP9 and MDA, and increasing the levels of SOD, eNOS, and GPx with increased dosage of AAT. Furthermore, we found that AAT injection inactivated PE mediated activation of PAK/STAT1/p38 signaling. These findings were confirmed in human samples. In conclusion, our study suggests that exogenous AAT injection increases the antioxidants and suppresses oxidative stress, and subsequent prevention of PE development through inactivation of STAT1/p38 signaling. Thus, AAT would become a potential strategy for PE therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK\'s central role in the cross talk with signaling and interacting proteins, as well as PAK\'s position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1\'s pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    PAK1在增殖和肿瘤发生中起重要作用,至少部分地通过促进C-RAF(Ser-338)或MEK1(Ser-298)的ERK磷酸化。我们观察到PAK1的激酶死亡突变形式的过表达如何增加MEK1/2(Ser-217/Ser-221)和ERK(Thr-202/Tyr-204)的磷酸化,尽管B-RAF(Ser-445)和C-RAF(Ser-338)的磷酸化保持不变。此外,PAK1激活剂Rac1的增加激活诱导Rac1,PAK1和MEK1的三重复合物的形成,而与PAK1的激酶活性无关。这些数据表明PAK1可以以不依赖激酶的方式刺激MEK活性,可能通过充当支架来促进C-RAF的相互作用。
    PAK1 plays an important role in proliferation and tumorigenesis, at least partially by promoting ERK phosphorylation of C-RAF (Ser-338) or MEK1 (Ser-298). We observed how that overexpression of a kinase-dead mutant form of PAK1 increased phosphorylation of MEK1/2 (Ser-217/Ser-221) and ERK (Thr-202/Tyr-204), although phosphorylation of B-RAF (Ser-445) and C-RAF (Ser-338) remained unchanged. Furthermore, increased activation of the PAK1 activator Rac1 induced the formation of a triple complex of Rac1, PAK1, and MEK1 independent of the kinase activity of PAK1. These data suggest that PAK1 can stimulate MEK activity in a kinase-independent manner, probably by serving as a scaffold to facilitate interaction of C-RAF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号