Organic chloramines

  • 文章类型: Journal Article
    藻类水华已成为全世界水处理中的重大挑战。在饮用水的氯化中,藻类有机物(AOM)导致有机氯胺的形成。这篇综述的目的是全面总结和讨论AOM衍生的有机氯胺及其化学活性和毒性的最新研究,从而提请注意有机氯胺的潜在化学和卫生风险。水源中的主要藻类物种随位置和季节而变化。来自蓝细菌的AOM,绿藻,和硅藻组成不同。AOM衍生的氨基酸占有机氯胺前体的一小部分。实验动力学数据和量子化学计算均表明,在模型化合物(氨基酸和肽)的氯化中,有机氯胺的优先形成。有机氯胺在水中具有持久性,可以转化为二氯和三氯有机氯胺,未知的低分子量有机氯胺,和含氮消毒副产物与过量的游离氯。有机氯胺中的活性氯(Cl)可导致氯化酚类化合物的形成。有机氯胺影响紫外线消毒中自由基和后续产物的产生和种类。理论预测和毒理学测试表明,有机氯胺可能对细菌或细胞造成氧化或毒性压力。总的来说,有机氯胺,作为一组高分子量消毒副产物,寿命相对较长,适度的化学活动,以及对公众的高卫生风险。从定量检测方法的角度提出了有机氯胺的未来观点,来自各种主要藻类的前体,有机氯胺的化学活性,和毒性/影响。
    Algal blooms have become a significant challenge in water treatment all over the world. In chlorination of drinking water, algal organic matter (AOM) leads to the formation of organic chloramines. The objectives of this review are to comprehensively summarize and discuss the up-to-date researches on AOM-derived organic chloramines and their chemical activities and toxicity, thereby drawing attention to the potentially chemical and hygienic risks of organic chloramines. The predominant algal species in water sources varied with location and season. AOM from cyanobacteria, green algae, and diatoms are composed of diverse composition. AOM-derived amino acids take a low portion of the precursors of organic chloramines. Both experimental kinetic data and quantum chemical calculation demonstrate the preferential formation of organic chloramines in the chlorination of model compounds (amino acids and peptides). Organic chloramines are persistent in water and can transform into dichloro- and trichloro-organic chloramines, unknown low-molecular-weight organic chloramines, and nitrogenous disinfection byproducts with the excess of free chlorine. The active chlorine (Cl+) in organic chloramines can lead to the formation of chlorinated phenolic compounds. Organic chloramines influence the generation and species of radicals and subsequent products in UV disinfection. Theoretical predictions and toxicological tests suggest that organic chloramines may cause oxidative or toxic pressure to bacteria or cells. Overall, organic chloramines, as one group of high-molecular-weight disinfection byproducts, have relatively long lifetimes, moderate chemical activities, and high hygienic risks to the public. Future perspectives of organic chloramines are suggested in terms of quantitative detection methods, the precursors from various predominant algal species, chemical activities of organic chloramines, and toxicity/impact.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水中的有机氯胺会带来化学和微生物风险。必须去除有机氯胺的前体(氨基酸和分解的肽/蛋白质),以限制其在消毒中的形成。在我们的工作中,选择纳米过滤以除去有机氯胺前体。为了解决藻类有机物中小分子的“权衡”效应和低排斥,我们通过在载有共价有机骨架(COF)纳米颗粒(TpPa-SO3H)的聚丙烯腈(PAN)复合载体上的界面聚合,合成了具有折皱聚酰胺(PA)层的薄膜复合(TFC)纳滤(NF)膜。与对照NF膜相比,获得的NF膜(PA-TpPa-SO3H/PAN)的渗透率从10.2增加到28.2Lm-2h-1bar-1,氨基酸排斥率从24%增加到69%。TpPa-SO3H纳米粒子的加入降低了PA层的厚度,增加了膜的亲水性,增加了氨基酸通过膜转移的过渡能障,通过扫描电子显微镜鉴定,接触角试验,和密度泛函理论计算,分别。最后,预氧化结合PA-TpPa-SO3H/PAN膜纳滤对有机氯胺形成的限制进行了评价。我们发现,KMnO4预氧化和PA-TpPa-SO3H/PAN膜纳滤在含藻水处理中的联合应用可以最大程度地减少随后氯化中有机氯胺的形成,并在过滤过程中保持高通量。我们的工作为含藻水处理和有机氯胺控制提供了有效的方法。
    Organic chloramines in water would pose both chemical and microbiological risks. It is essential to remove the precursors of organic chloramine (amino acids and decomposed peptides/proteins) to limit its formation in disinfection. In our work, nanofiltration was chosen to remove organic chloramines precursors. To solve the \"trade-off\" effect and low rejection of small molecules in algae organic matter, we synthesized a thin film composite (TFC) nanofiltration (NF) membrane with a crumpled polyamide (PA) layer via interfacial polymerization on polyacrylonitrile (PAN) composite support loaded with covalent organic framework (COF) nanoparticles (TpPa-SO3H). The obtained NF membrane (PA-TpPa-SO3H/PAN) increased the permeance from 10.2 to 28.2 L m-2 h-1 bar-1 and the amino acid rejection from 24% to 69% compared to the control NF membrane. The addition of TpPa-SO3H nanoparticles decreased the thickness of PA layers, increased the hydrophilicity of the membrane, and increased the transition energy barrier for amino acids transferring through the membrane, which was identified by scanning electron microscope, contact angle test, and density functional theory computations, respectively. Finally, pre-oxidation coupled with PA-TpPa-SO3H/PAN membrane nanofiltration on the limitation of organic chloramines formation was evaluated. We found that the combined application of KMnO4 pre-oxidation and PA-TpPa-SO3H/PAN membranes nanofiltration in algae-containing water treatment could minimize the formation of organic chloramines in subsequent chlorination and maintain a high flux during filtration. Our work provides an effective way for algae-containing water treatment and organic chloramines control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    溴化消毒副产物(Br-DBPs)的形成是饮用水消毒中的一个新兴问题,因为其毒性比氯化类似物高数十倍至数百倍,并且由于源水中广泛存在溴化物。然而,Br-DBPs形成的机制和途径尚不清楚。在这项研究中,我们用甘氨酸,丙氨酸,和丝氨酸作为模型前体,并观察到溴化卤代乙腈(Br-HANs)比溴化三卤代甲烷更有可能形成。结果表明,溴化物的存在不仅是HAN形成的重要途径之一。我们建议有机溴胺,类似于有机氯胺,在Br-HAN的形成中起着重要作用。实验和理论结果都证实,有机溴胺的衰变比有机氯胺的衰变快,这证实了我们的假设。研究pH的影响以进一步证实有机溴胺的作用。此外,我们发现,Br-HANs的形成被显著抑制时,一氯胺被用作消毒剂,因为有机溴胺的形成被阻断了。然而,在UV/氯过程中,由于有机溴胺在UV光解作用下的衰减更快,因此促进了Br-HAN的形成。总的来说,我们的研究揭示了Br-HAN的形成机制,并提供了一种防止Br-HAN形成的替代方法。
    The formation of brominated disinfection byproducts (Br-DBPs) is an emerging issue in drinking water disinfection because its toxicity is tens to hundreds of times higher than that of chlorinated analogues and because of the widespread presence of bromide in source water. However, the mechanism and pathways of Br-DBPs formation remain unclear. In this study, we used glycine, alanine, and serine as model precursors and observed that brominated haloacetonitriles (Br-HANs) were more likely to be formed than brominated trihalomethanes. The results showed that there is not only one important way to HAN formation in the presence of bromide. We propose that organic bromamines, similar to organic chloramines, play a significant role in the formation of Br-HANs. Both the experimental and theoretical results confirmed that the decay of organic bromamines was faster than that of organic chloramines, which verified our assumption. The effect of the pH was investigated to further confirm the role of organic bromamines. In addition, we found that the formation of Br-HANs was significantly inhibited when monochloramine was used as a disinfectant, because the formation of organic bromamines was blocked. However, the formation of Br-HANs was promoted during the UV/chlorine process because of the faster decay of organic bromamines under UV photolysis. Overall, our study reveals the formation mechanism of Br-HANs and provides an alternative method to prevent Br-HAN formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在含藻类水的氯化中形成的有机氯胺是含氮消毒副产物(N-DPB)的典型前体。同时提高有机氯胺的去除效率和控制DBP形成的目标仍然是一个挑战。在这项研究中,我们报告了一种两步氯化策略,用于将有机氯胺转移到一氯胺,基于单和二有机氯胺的分解机理,这可以限制有机氯胺的形成并抑制N-DBPs的形成。我们证明,两步氯化可以使有机氯胺的形成比常规的一步氯化减少近50%。此外,两步氯化不仅阻断了有机氯胺分解成腈的途径,但也导致有机氯胺转化为一氯胺。在藻类有机物的两步氯化过程中,有机氯胺转移比例下降了6.5%,一氯胺转移比例上升了17.0%。N-DBP地层,尤其是卤代乙腈(HAN),在两步氯化中,随着有机氮变为无机氮(一氯胺),显着降低。这项工作进一步阐明了从藻类有机物到N-DBPs的过程,这可以扩大我们对藻类衍生的有机氯胺去除和DBPs控制的理解。
    Organic chloramines formed in chlorination of algae-containing water are typical precursors of nitrogenous disinfection byproducts (N-DPBs). The objective to simultaneously enhance the removal efficiency of organic chloramines and control DBP formation remains a challenge. In this study, we report a two-step chlorination strategy for transferring organic chloramines to monochloramine based on the decomposition mechanisms of mono- and di-organic chloramines, which could limit organic chloramines formation and inhibit N-DBPs formation. We demonstrated that two-step chlorination could decrease the organic chloramines formation by nearly 50% than conventional one-step chlorination. Furthermore, two-step chlorination not only blocked the pathway that organic chloramines decomposed to nitriles, but also led to the conversion of organic chloramines to monochloramine. During two-step chlorination of algal organic matter, the organic chloramine transfer proportion decreased by 6.5% and the monochloramine transfer proportion increased by 17.0%. The N-DBP formation, especially haloacetonitriles (HANs), decreased significantly as organic nitrogen became inorganic nitrogen (monochloramine) in two-step chlorination. This work further clarified the process from algal organic matter to N-DBPs, which could expand our understanding of algae-derived organic chloramines removal and DBPs control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Release of algal organic matter (AOM) from algae poses great threats to drinking water safety. As organic nitrogen in AOM is relatively higher compared to natural organic matter (NOM), the organic chloramine formation during chlorination cause overestimation of effective chlorine, which may lead to a biological risk. This study compared the organic chloramine formation from AOM and NOM, and confirmed that AOM tend to form more organic chloramines during chlorination. Furthermore, it was found that hydrophilic fraction and high molecular weight (>100 kDa) fraction of AOM generated major organic chloramines due to a high content of protein. Based on the results of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), Spearman\'s rank correlation was used to analyze the relationship between molecular composition of AOM and organic chloramine formation. Notably, molecules with high correlation to organic chloramine formation located in a triangle region of van Krevelen diagram, which is a typical area of peptides. Therefore, it indicates that the precursors of organic chloramine in AOM are mainly proteins/peptides, and appropriate treatment processes (e.g., biological treatment or membrane filtration) should be addressed to effectively remove the precursors before chlorination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Organic chloramines have attracted considerable attention because of their potential toxicity and reactivity. However, the lack of suitable and effective analytical methods has limited the study of organic chloramines due to their volatile and unstable properties. In this study, membrane introduction mass spectrometry (MIMS) combined with DPD/FAS titration was used to monitor the formation of organic chloramines. N-chlorodimethylamine [(CH3)2NCl] and N-chlorodiethylamine [(C2H5)2NCl] were detected and identified as the dominant volatile DBPs during chlorination of 18 organic compounds with dimethylamine or diethylamine functional groups, with yields ranging from 0.3% to 51.1% at a chlorine to precursor (Cl/P) molar ratio of 8.0. (CH3)2NBr was formed in the presence of bromide, while the formation of (CH3)2NCl was decreased. The reaction of phenol with (CH3)2NCl combined with theoretical calculations confirmed that the reactivity of (CH3)2NCl was similar to that of monochloramine. Moreover, (CH3)2NCl and (C2H5)2NCl were observed at the ppb level during chlorination of actual water samples collected from different areas. The results suggest that (CH3)2NCl and (C2H5)2NCl are important organic chloramines during chlorination, which may lead to the occurrence of further oxidation reactions and promote the formation of other disinfection byproducts simultaneously and should be of concern.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Pre-chlorination and UV disinfection are two common processes in drinking water treatment plants. Sulfamethoxazole (SMX), an antibiotic widely detected in source water, was selected as a precursor to study the conversion of chlorine/nitrogen species and DBP formation in pre-chlorination/post-UV process. The combined chlorine (mainly organic chloramines) produced in pre-chlorination of SMX can self-degrade and release free chlorine back again as pre-chlorination time goes on. With free chlorine dose increasing, the self-degradation rate of combined chlorine increased obviously. But the combined chlorine stopped self-degrading and remained stable around 1 mg-Cl2/L after adding 0.30 mM chlorine for 30 min. Post-UV treatment after pre-chlorination can enhance the degradation and achieve a complete removal of combined chlorine (including organic chloramines). Deamination occurred during pre-chlorination/post-UV process and deamination amount (-NH2) per SMX concentration was 0.19 M/M. Radicals in this process had no obvious influence on chlorine/nitrogen species conversion. Direct chlorination of SMX had the lowest DBP formation potentials while the application of pre-chlorination and UV enhanced them. Compared with UV treatment only, dichloroacetonitrile formation potential of SMX reduced by 1.58 × 10-3 mol/mol-SMX (17.37 μg/l) after pre-chlorination/post-UV treatment. During pre-chlorination/post-UV/final-chlorination treatment of SMX, Br- and natural organic matter can enhance DBP formation and toxicity-weighted values. Acid conditions showed a very high DBP risk, while alkaline conditions could cut this risk obviously, especially for the toxicity-weighted values of these DBPs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M-1 s-1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H+, HOCl, OCl- and chlorocreatinine- with OCl- were calculated as 2.43 (±1.55) × 104 M-2 s-1, 1.05 (±0.09) M-1 s-1, 2.86 (±0.30) M-1 s-1 and 3.09 (±0.24) M-1 s-1, respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Surface water are frequently subjected to problems of algal blooms and release of algae organic matter (AOM) from the algae cells, which cause many water quality issues. This study investigated the formation of organic chloramines and nitrogenous disinfection by-products (N-DBPs) during chlor(am)ination and UV/chlor(am)ination of AOM in drinking water. AOM caused higher organic chloramine formation than humic acid and fulvic acid during chlor(am)ination. The formation of organic chloramines increased first and then decreased with the increase of free chlorine dosage, but kept increasing with the increase of NH2Cl dosage. During AOM chlorination, the formation of organic chloramines kept decreasing as the reaction time went by, and the maximum organic chloramine proportion (79.1%) in total chlorine occurred at 8 h. However, during AOM chloramination, the formation of organic chloramines increased first, decreased in the following and then increased again as the reaction time went by, and the maximum organic chloramine proportion (22.1%) in total chlorine occurred at 24 h. UV irradiation pretreatment did not effectively influence organic chloramine formation during AOM chlor(am)ination, but accelerated the degradation of organic chloramines during chloramination. Besides, UV pretreatment enhanced the formation of N-DBPs during the subsequent chlor(am)ination of AOM, especially dichloroacetonitrile.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This study investigated the changes of chlorine species and proportion of organic chloramines during the chlorination process after UV irradiation pretreatment in drinking water. It was found that the UV pretreatment could enhance the percentage of organic chloramines by increasing free chlorine consumption in the chlorination of raw waters. The percentage of organic chloramines in total chlorine increased with UV intensity and irradiation time in raw waters. However, for the humic acid synthesized water, the percentage of organic chloramines increased first and then decreased with the increase of UV irradiation time. The value of SUVA declined in both raw and humic acid synthesized waters over the UV irradiation time, which indicated that the decomposition of aromatic organic matter by UV could be a contributor to the increase of free chlorine consumption and organic chloramine proportion. The percentage of organic chloramines during chlorination of raw waters after 30-min UV irradiation pretreatment varied from 20.2% to 41.8%. Total chlorine decreased obviously with the increase of nitrate concentration, but the percentage of organic chloramines increased and was linearly correlated to nitrate concentration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号