Nitrogen Doping

氮掺杂
  • 文章类型: Journal Article
    多孔碳材料的氮掺杂是提高电极材料电化学性能的有效途径。在这项研究中,制备了源自花生壳的氮掺杂多孔碳作为超级电容器的电极。三聚氰胺,尿素,磷酸脲,和磷酸二氢铵被用作不同的氮掺杂剂。花生壳制备的优化电极材料PA-1-1,磷酸二氢铵作为氮掺杂剂,表现出3.11%的N含量和602.7m2/g的比表面积。在6MKOH中,PA-1-1电极在1A/g的电流密度下提供208.3F/g的高比电容。此外,PA-1-1电极表现出优异的倍率性能,比电容为170.0F/g(保留率为81.6%),保持在20A/g。在5000次循环后,在20A/g时,它提供了PA-1-1的电容,比电容保持率为98.8%,表明优异的循环稳定性。PA-1-1//PA-1-1对称超级电容器在2467.0W/kg的功率密度下表现出17.7Wh/kg的能量密度。这项工作不仅为超级电容器提供了有吸引力的N掺杂多孔碳材料,而且还提供了对从废物剥离中衍生的生物炭碳的合理设计的新颖见解。
    The doping of porous carbon materials with nitrogen is an effective approach to enhance the electrochemical performance of electrode materials. In this study, nitrogen-doped porous carbon derived from peanut shells was prepared as an electrode for supercapacitors. Melamine, urea, urea phosphate, and ammonium dihydrogen phosphate were employed as different nitrogen dopants. The optimized electrode material PA-1-1 prepared by peanut shells, with ammonium dihydrogen phosphate as a nitrogen dopant, exhibited a N content of 3.11% and a specific surface area of 602.7 m2/g. In 6 M KOH, the PA-1-1 electrode delivered a high specific capacitance of 208.3 F/g at a current density of 1 A/g. Furthermore, the PA-1-1 electrode demonstrated an excellent rate performance with a specific capacitance of 170.0 F/g (retention rate of 81.6%) maintained at 20 A/g. It delivered a capacitance of PA-1-1 with a specific capacitance retention of 98.8% at 20 A/g after 5000 cycles, indicating excellent cycling stability. The PA-1-1//PA-1-1 symmetric supercapacitor exhibited an energy density of 17.7 Wh/kg at a power density of 2467.0 W/kg. This work not only presents attractive N-doped porous carbon materials for supercapacitors but also offers a novel insight into the rational design of biochar carbon derived from waste peelings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    制造高效且稳健的氧还原反应(ORR)电催化剂是具有挑战性的,但对于实际的Zn-空气电池是理想的。作为一种早期的过渡金属氧化物,二氧化锆(ZrO2)由于其独特的高稳定性特性而成为一种有趣的催化剂,抗毒性,良好的催化活性,和小的氧吸附焓。然而,其固有的差的导电性使得其难以用作ORR电催化剂。在这里,我们报告了嵌入N掺杂多孔碳基质中的超细N掺杂ZrO2纳米颗粒作为ORR电催化剂(N-ZrO2/NC)。N-ZrO2/NC催化剂表现出优异的活性和长期耐久性,其半波电位(E1/2)为0.84V,并且在0.1MKOH中对氧的四电子还原具有选择性。在锌空气电池中就业时,N-ZrO2/NC的功率密度为185.9mWcm-2,比容量为797.9mAhgZn-1,超过了商用Pt/C(122.1mWcm-2和782.5mAhgZn-1)。这种优异的性能主要归功于超细ZrO2纳米颗粒,导电碳基材,以及N掺杂后ZrO2的电子能带结构。密度泛函理论计算表明,通过N原子的p态与氧原子的2p态的杂化,N掺杂可以将ZrO2的带隙从3.96eV降低到3.33eV;这提供了增强的电导率并导致更快的电子转移动力学。这项工作为其他增强型半导体和绝缘体材料的设计提供了一种新的方法。
    Fabricating highly efficient and robust oxygen reduction reaction (ORR) electrocatalysts is challenging but desirable for practical Zn-air batteries. As an early transition-metal oxide, zirconium dioxide (ZrO2) has emerged as an interesting catalyst owing to its unique characteristics of high stability, anti-toxicity, good catalytic activity, and small oxygen adsorption enthalpies. However, its intrinsically poor electrical conductivity makes it difficult to serve as an ORR electrocatalyst. Herein, we report ultrafine N-doped ZrO2 nanoparticles embedded in an N-doped porous carbon matrix as an ORR electrocatalyst (N-ZrO2/NC). The N-ZrO2/NC catalyst displays excellent activity and long-term durability with a half-wave potential (E1/2) of 0.84 V and a selectivity for the four-electron reduction of oxygen in 0.1 M KOH. Upon employment in a Zn-air battery, N-ZrO2/NC presented an intriguing power density of 185.9 mW cm-2 and a high specific capacity of 797.9 mA h gZn -1, exceeding those of commercial Pt/C (122.1 mW cm-2 and 782.5 mA h gZn -1). This excellent performance is mainly attributed to the ultrafine ZrO2 nanoparticles, the conductive carbon substrate, and the modified electronic band structure of ZrO2 after N-doping. Density functional theory calculations demonstrated that N-doping can reduce the band-gap of ZrO2 from 3.96 eV to 3.33 eV through the hybridization of the p state of the N atom with the 2p state of the oxygen atom; this provides enhanced electrical conductivity and results in faster electron-transfer kinetics. This work provides a new approach for the design of other enhanced semiconductor and insulator materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然二氧化钛(TiO2)具有广泛的潜在应用,TiO2的光催化性能受到其有限的光响应范围和光生电荷载流子的快速复合的限制。在这项工作中,通过以尿素为N源的简单退火处理,可以制备氮(N)掺杂的TiO2并引入氧空位(Vo)。在退火处理期间,尿素的存在不仅实现了TiO2的N掺杂,而且在N掺杂的TiO2(N-TiO2)中产生了Vo,这也适用于商业TiO2(P25)。出乎意料的是,N掺杂抑制了退火处理引起的N-TiO2比表面积的降低,因此,保持更活跃的网站。因此,N掺杂和Vo的形成以及增加的活性位点都有助于N-TiO2在可见光照射下的优异光催化性能。我们的工作为通过尿素退火处理制备具有Vo的N-TiO2提供了一种简便的策略。
    Although titanium dioxide (TiO2) has a wide range of potential applications, the photocatalytic performance of TiO2 is limited by both its limited photoresponse range and fast recombination of the photogenerated charge carriers. In this work, the preparation of nitrogen (N)-doped TiO2 accompanied by the introduction of oxygen vacancy (Vo) has been achieved via a facile annealing treatment with urea as the N source. During the annealing treatment, the presence of urea not only realizes the N-doping of TiO2 but also creates Vo in N-doped TiO2 (N-TiO2), which is also suitable for commercial TiO2 (P25). Unexpectedly, the annealing treatment-induced decrease in the specific surface area of N-TiO2 is inhibited by the N-doping and, thus, more active sites are maintained. Therefore, both the N-doping and formation of Vo as well as the increased active sites contribute to the excellent photocatalytic performance of N-TiO2 under visible light irradiation. Our work offers a facile strategy for the preparation of N-TiO2 with Vo via the annealing treatment with urea.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    每到深秋,飘扬的杨树叶子散落在校园和城市街道上。在这项工作中,以杨树叶为原料,而H3PO4和KOH用作活化剂并且尿素用作氮源来制备基于生物质的活性炭(AC)以捕获CO2。孔隙结构,官能团和形态学,和解吸性能的制备ACs进行了表征;CO2吸附,再生,和动力学也进行了评估。结果表明,H3PO4和尿素明显促进孔结构和吡咯氮(N-5)的发育,而KOH和尿素更有利于羟基(-OH)和醚(C-O)官能团的形成。在最佳操作条件下,H3PO4和KOH活化杨树经尿素处理后对CO2的吸附量分别达到4.07和3.85mmol/g,分别,在室温下;经过十个吸附-解吸循环后,两者均显示出稳定的再生行为。
    Every late autumn, fluttering poplar leaves scatter throughout the campus and city streets. In this work, poplar leaves were used as the raw material, while H3PO4 and KOH were used as activators and urea was used as the nitrogen source to prepare biomass based-activated carbons (ACs) to capture CO2. The pore structures, functional groups and morphology, and desorption performance of the prepared ACs were characterized; the CO2 adsorption, regeneration, and kinetics were also evaluated. The results showed that H3PO4 and urea obviously promoted the development of pore structures and pyrrole nitrogen (N-5), while KOH and urea were more conductive to the formation of hydroxyl (-OH) and ether (C-O) functional groups. At optimal operating conditions, the CO2 adsorption capacity of H3PO4- and KOH-activated poplar leaves after urea treatment reached 4.07 and 3.85 mmol/g, respectively, at room temperature; both showed stable regenerative behaviour after ten adsorption-desorption cycles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    几十年来,低范围光吸收和光生电荷载流子的快速重组阻止了有效和适用的光催化的发生。量子点(QD)由于其尺寸受控的光子特性和电荷分离能力而提供解决方案。在这里,通过使用低温制备具有稳定氧空位的良好分散的间隙氮掺杂TiO2量子点(N-TiO2-x-VO),退火辅助水热法。值得注意的是,静电排斥可防止N-TiO2-x-VO表面原位积累的负电荷引起的聚集,实现完整的太阳光谱利用(200-800nm)与2.5eV的带隙。增强的UV-vis光催化H2释放速率(HER)达到2757µmolg-1h-1,比商业TiO2(66µmolg-1h-1)高41.6倍。引人注目的是,在可见光下,HER速率为189μmolg-1h-1。机理的实验和模拟研究表明,VO可以作为N掺杂活性位点上的光生电荷载流子的电子储库,因此,提高激子对的分离率。此外,与本体TiO2(0.66V)相比,负自由能(-0.35V)表明HER的热力学更有利。这项研究工作为开发适用于可持续零碳能源供应的HER高效光催化策略铺平了道路。
    Low-range light absorption and rapid recombination of photo-generated charge carriers have prevented the occurrence of effective and applicable photocatalysis for decades. Quantum dots (QDs) offer a solution due to their size-controlled photon properties and charge separation capabilities. Herein, well-dispersed interstitial nitrogen-doped TiO2 QDs with stable oxygen vacancies (N-TiO2-x-VO) are fabricated by using a low-temperature, annealing-assisted hydrothermal method. Remarkably, electrostatic repulsion prevented aggregation arising from negative charges accumulated in situ on the surface of N-TiO2-x-VO, enabling complete solar spectrum utilization (200-800 nm) with a 2.5 eV bandgap. Enhanced UV-vis photocatalytic H2 evolution rate (HER) reached 2757 µmol g-1 h-1, 41.6 times higher than commercial TiO2 (66 µmol g-1 h-1). Strikingly, under visible light, HER rate was 189 µmol g-1 h-1. Experimental and simulated studies of mechanisms reveal that VO can serve as an electron reservoir of photo-generated charge carriers on N-doped active sites, and consequently, enhance the separation rate of exciton pairs. Moreover, the negative free energy (-0.35 V) indicates more favorable thermodynamics for HER as compared with bulk TiO2 (0.66 V). This research work paves a new way of developing efficient photocatalytic strategies of HER that are applicable in the sustainable carbon-zero energy supply.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有三维多孔结构的新型二元碳复合材料(GDY-NCNTs和GDY-CNTs),通过原位生长方法合成,在本文中被采纳。GDY-NCNT复合材料表现出优异的比电容性能(679Fg-1,2mVs-1,与GDY-CNT相比增加了139%)和良好的循环稳定性(10000次循环后的容量保持率高达116%)。三维多孔结构不仅促进了离子迁移,增加了有效比表面积,提高了比电容性能,而且适应了充放电过程中的体积膨胀和收缩,提高了循环稳定性。GDY-NCNTs碳纳米管中氮掺杂的存在增加了复合材料的表面缺陷,提供更多的电化学点,并提高了复合材料的表面润湿性,进一步提高复合材料的电化学性能。
    New binary carbon composites (GDY-NCNTs and GDY-CNTs) with a three-dimensional porous structure, which are synthesized by an in situ growth method, are adopted in this article. The GDY-NCNTs composites exhibit excellent specific capacitance performance (679 F g-1, 2 mV s-1, 139% increase compared to GDY-CNTs) and good cycling stability (with a capacity retention rate of up to 116% after 10000 cycles). The three-dimensional porous structure not only promotes ion transfer and increases the effective specific surface area to improve its specific capacitance performance but also adapts to the volume expansion and contraction during the charging and discharging process to improve its cycling stability. The presence of nitrogen doping in the carbon nanotubes of GDY-NCNTs increases the surface defects of the composites, provides more electrochemical points, and improves the surface wettability of the composites, further improving the electrochemical performance of the composites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钾离子混合电容器(PIHC)代表了新兴的一类电化学储能装置,其特征在于其出色的能量和功率密度。利用源自可持续生物质的无定形碳为高速率钾离子存储应用中的阳极材料提供了经济且环保的选择。然而,大多数生物质衍生碳材料的钾离子储存能力仍然适中。应对这一挑战,氮掺杂工程和独特的纳米结构设计成为提高无定形碳阳极电化学性能的有效策略。开发高度氮掺杂的纳米碳材料是一项具有挑战性的任务,因为大多数木质纤维素生物质缺乏氮官能团。在这项工作中,我们提出了一种直接碳化超分子介导的木质素有机分子聚集体(OMA)的一般策略,以制备高度氮掺杂的生物质衍生的纳米碳。我们获得了木质素衍生的,高度掺氮的涡轮状碳(LNTC)。具有由无定形组成的三维涡轮状结构,薄的碳纳米片,当用作PIHC的阳极时,LNTC表现出377mAh/g-1的容量。这项工作也为制备源自生物质的高氮掺杂纳米碳材料提供了一种新的合成方法。
    Potassium-ion hybrid capacitors (PIHCs) represent a burgeoning class of electrochemical energy storage devices characterized by their remarkable energy and power densities. Utilizing amorphous carbon derived from sustainable biomass presents an economical and environmentally friendly option for anode material in high-rate potassium-ion storage applications. Nevertheless, the potassium-ion storage capacity of most biomass-derived carbon materials remains modest. Addressing this challenge, nitrogen doping engineering and the design of distinctive nanostructures emerge as effective strategies for enhancing the electrochemical performance of amorphous carbon anodes. Developing highly nitrogen-doped nanocarbon materials is a challenging task because most lignocellulosic biomasses lack nitrogen functional groups. In this work, we propose a general strategy for directly carbonizing supermolecule-mediated lignin organic molecular aggregate (OMA) to prepare highly nitrogen-doped biomass-derived nanocarbon. We obtained lignin-derived, highly nitrogen-doped turbine-like carbon (LNTC). Featuring a three-dimensional turbine-like structure composed of amorphous, thin carbon nanosheets, LNTC demonstrated a capacity of 377 mAh g-1 when used as the anode for PIHCs. This work also provides a new synthesis method for preparing highly nitrogen-doped nanocarbon materials derived from biomass.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    四环素的滥用会导致其在动物源性食品中残留,给人类健康带来许多潜在的危害。因此,四环素的快速准确检测是保证食品安全的重要手段。氮掺杂和磷掺杂硅量子点(N-SiQDs,在这项研究中,通过一锅法水热法制备了具有显着光学稳定性的P-SiQD)。在346nm激发时,N-SiQD和P-SiQD在431nm和505nm处发射荧光,分别。两种SiQD有可能作为检测低浓度四环素(TC)的探针,采用静态淬火效应的机制。N-SiQD和P-SiQD的校准曲线在0-0.8μM和0-0.4μM范围内呈线性关系。检出限分别为5.35×10-4μmol/L和6.90×10-3μmol/L,分别。该方法可用于蜂蜜样品中TC的检测。此外,两种SiQD的显著抗菌功效可归因于大量细胞内活性氧的产生。SEM图像显示当用两种SiQD处理时,细菌细胞的结构被破坏并且表面变得不规则。这些特性使得SiQD能够作为优异的抗菌材料用于不同的生物医学应用。
    The abuse of tetracycline can lead to its residue in animal derived foods, posing many potential hazards to human health. Therefore, rapid and accurate detection of tetracycline is an important means to ensure food safety. Nitrogen doped and phosphorus doped silicon quantum dots (N-SiQDs, P-SiQDs) with remarkable optical stability were fabricated via a one-pot hydrothermal procedure in this study. Upon the excitation at 346 nm, N-SiQDs and P-SiQDs emitted fluorescence at 431 nm and 505 nm, respectively. Two SiQDs had the potential to serve as a probe for detecting low concentrations of tetracycline (TC), employing a mechanism of the static quenching effect. The calibration curves of N-SiQDs and P-SiQDs were linear within the range of 0-0.8 μM and 0-0.4 μM, the limits of detection were low as 5.35 × 10-4 μmol/L and 6.90 × 10-3 μmol/L, respectively. This method could be used successfully to detect TC in honey samples. Moreover, the remarkable antibacterial efficacy of two SiQDs could be attributed to the generation of a large number of intracellular reactive oxygen species. The SEM images showed that the structure of bacterial cell was disrupted and the surface became irregular when treated with both SiQDs. These properties enabled potential usage of SiQDs as excellent antibacterial material for different biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物质产生的多孔碳具有丰富的孔隙结构,便宜,并有很大的希望用作储能设备的碳材料。在这项工作中,以甘蔗渣为前驱体,小球藻为氮源,通过共热解制备了氮掺杂多孔碳。在活化过程中,ZnCl2既充当活化剂又充当氮固定剂,以产生孔并减少氮损失。热失重实验表明,甘蔗渣和小球藻的热解温度重叠,这为合成富氮生物炭创造了可能性。最佳样品(ZBC@C-5)的表面积为1508m2g-1,具有丰富的含氮官能团。三电极系统中的ZBC@C-5在0.5A/g时表现出244.1F/g,与以三聚氰胺为氮源的ZBC@M非常接近。这为低成本氮源的使用提供了新的机会。此外,器件表现出更好的电压保持率(39%)和电容保持率(96.3%)。这项研究的目标是找到一种低成本的,以及使用甘蔗渣和小球藻创建具有更好电化学性能的氮掺杂多孔碳材料的有效方法。
    Porous carbon generated from biomass has a rich pore structure, is inexpensive, and has a lot of promise for use as a carbon material for energy storage devices. In this work, nitrogen-doped porous carbon was prepared by co-pyrolysis using bagasse as the precursor and chlorella as the nitrogen source. ZnCl2 acts as both an activator and a nitrogen fixer during activation to generate pores and reduce nitrogen loss. The thermal weight loss experiments showed that the pyrolysis temperatures of bagasse and chlorella overlap, which created the possibility for the synthesis of nitrogen-rich biochar. The optimum sample (ZBC@C-5) possessed a surface area of 1508 m2g-1 with abundant nitrogen-containing functional groups. ZBC@C-5 in the three-electrode system exhibited 244.1F/g at 0.5A/g, which was extremely close to ZBC@M made with melamine as the nitrogen source. This provides new opportunities for the use of low-cost nitrogen sources. Furthermore, the devices exhibit better voltage retention (39%) and capacitance retention (96.3%). The goal of this research is to find a low cost, and effective method for creating nitrogen-doped porous carbon materials with better electrochemical performance for highly valuable applications using bagasse and chlorella.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碳质阴极和锌(Zn)阳极之间的存储容量和反应动力学的不平衡限制了锌离子混合电容器(ZIHC)的广泛应用。结构优化是碳材料实现足够的Zn2存储位点和令人满意的离子电子动力学的有前途的策略。在这里,多孔石墨碳纳米片(PGCN)是使用K3[Fe(C2O4)3]-和尿素辅助发泡策略以聚乙烯吡咯烷酮为碳前体简单合成的,其次是活化和石墨化。在碳纳米片中分布的具有良好匹配的孔径(0.80-1.94nm)的足够孔可以有效地缩短传质距离,促进活动网站的可访问性。具有高石墨化程度的部分石墨碳结构可以加速电子转移。此外,高氮掺杂(7.2at。%)提供额外的Zn2+存储位点以增加存储容量。因此,基于PGCN的ZIHC在0.5Ag-1时具有181mAhg-1的特殊比容量,145Whkg-1的出色能量密度,以及出色的循环能力,在10,000次循环中没有容量衰减。此外,用PGCN组装的柔性固态装置即使在以各种角度弯曲时也表现出优异的电化学性能。这项研究提出了一种简单而经济的策略来构建具有增强的存储容量和快速反应动力学的多孔石墨碳纳米片,以实现ZIHC的高性能。
    The imbalances of storage capacity and reaction kinetics between carbonaceous cathodes and zinc (Zn) anodes restrict the widespread application of Zn-ion hybrid capacitor (ZIHC). Structure optimization is a promising strategy for carbon materials to achieve sufficient Zn2+ storage sites and satisfied ion-electron kinetics. Herein, porous graphitic carbon nanosheets (PGCN) were simply synthesized using a K3[Fe(C2O4)3]- and urea-assisted foaming strategy with polyvinylpyrrolidone as carbon precursor, followed by activation and graphitization. Sufficient pores with well-matched pore sizes (0.80-1.94 nm) distributed across the carbon nanosheets can effectively shorten mass-transfer distance, promoting accessibility to active sites. A partially graphitic carbon structure with high graphitization degree can accelerate electron transfer. Furthermore, high nitrogen doping (7.2 at.%) provides additional Zn2+ storage sites to increase storage capacity. Consequently, a PGCN-based ZIHC has an exceptional specific capacity of 181 mAh g-1 at 0.5 A g-1, superb energy density of 145 Wh kg-1, and excellent cycling ability without capacity decay over 10,000 cycles. In addition, the flexible solid-state device assembled with PGCN exhibits excellent electrochemical performances even when bent at various angles. This study proposes a straightforward and economical strategy to construct porous graphitic carbon nanosheets with enhanced storage capacity and fast reaction kinetics for the high performance of ZIHC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号