IDO, Indoleamine 2,3-dioxygenase

IDO,吲哚胺 2, 3 - 双加氧酶
  • 文章类型: Journal Article
    哮喘是一种复杂的肺部疾病,这在全球范围内增加了发病率和死亡率。哮喘的病理生理学与线粒体功能障碍存在重叠,MSCs可能对线粒体功能障碍具有调节作用并治疗哮喘。因此,研究了MSCs和线粒体信号通路在哮喘中的免疫调节作用。在培养MSCs并产生哮喘动物模型后,通过IV通过IT用MSC治疗小鼠。BALf的嗜酸性粒细胞计数,IL-4、-5、-13、-25、-33、INF-γ、Cys-LT,检测LTB4,LTC4,线粒体COX-1,COX-2,ND1,Nrf2,Cytb基因的表达,并进行肺组织病理学研究。BALf的嗜酸性粒细胞,IL-4、-5、-13、-25、-33、LTB4、LTC4、Cys-LT、线粒体基因表达(COX-1,COX-2,Cytb和ND-1),血管周围和支气管周围炎症,病理研究中杯状细胞的粘液过度产生和增生在MSCs治疗的哮喘小鼠中明显减少,发现Nrf-2基因表达呈逆转趋势,IFN-γ水平和INF-γ/IL-4的比率。MSC治疗可以控制炎症,哮喘免疫炎症因子与线粒体相关基因,预防哮喘免疫病理。
    Asthma is a complicated lung disease, which has increased morbidity and mortality rates in worldwide. There is an overlap between asthma pathophysiology and mitochondrial dysfunction and MSCs may have regulatory effect on mitochondrial dysfunction and treats asthma. Therefore, immune-modulatory effect of MSCs and mitochondrial signaling pathways in asthma was studied. After culturing of MSCs and producing asthma animal model, the mice were treated with MSCs via IV via IT. BALf\'s eosinophil Counting, The levels of IL-4, -5, -13, -25, -33, INF-γ, Cys-LT, LTB4, LTC4, mitochondria genes expression of COX-1, COX-2, ND1, Nrf2, Cytb were measured and lung histopathological study were done. BALf\'s eosinophils, the levels of IL-4, -5, -13, -25, -33, LTB4, LTC4, Cys-LT, the mitochondria genes expression (COX-1, COX-2, Cytb and ND-1), perivascular and peribronchial inflammation, mucus hyper-production and hyperplasia of the goblet cell in pathological study were significantly decreased in MSCs-treated asthma mice and reverse trend was found about Nrf-2 gene expression, IFN-γ level and ratio of the INF-γ/IL-4. MSC therapy can control inflammation, immune-inflammatory factors in asthma and mitochondrial related genes, and prevent asthma immune-pathology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在临床治疗中靶向程序性细胞死亡配体1(PD-L1)/程序性细胞死亡1(PD-1)途径的免疫治疗策略在治疗多种类型的癌症方面取得了显著成功。然而,由于肿瘤和个体免疫系统的异质性,PD-L1/PD-1阻断在控制许多患者的恶性肿瘤方面仍然显示出缓慢的反应率。越来越多的证据表明,抗PD-L1/抗PD-1治疗的有效反应需要建立一个完整的免疫周期。在免疫周期的任何步骤中的损伤是免疫疗法失败的最重要原因之一。免疫周期的损伤可以通过表观遗传修饰来恢复,包括重新编程肿瘤相关免疫的环境,通过增加肿瘤抗原的呈递来引发免疫反应,通过调节T细胞运输和再激活。因此,PD-L1/PD-1阻断和表观遗传药物的合理组合可能为免疫系统再训练和改善检查点阻断治疗的临床结局提供巨大潜力.
    Immunotherapy strategies targeting the programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) pathway in clinical treatments have achieved remarkable success in treating multiple types of cancer. However, owing to the heterogeneity of tumors and individual immune systems, PD-L1/PD-1 blockade still shows slow response rates in controlling malignancies in many patients. Accumulating evidence has shown that an effective response to anti-PD-L1/anti-PD-1 therapy requires establishing an integrated immune cycle. Damage in any step of the immune cycle is one of the most important causes of immunotherapy failure. Impairments in the immune cycle can be restored by epigenetic modification, including reprogramming the environment of tumor-associated immunity, eliciting an immune response by increasing the presentation of tumor antigens, and by regulating T cell trafficking and reactivation. Thus, a rational combination of PD-L1/PD-1 blockade and epigenetic agents may offer great potential to retrain the immune system and to improve clinical outcomes of checkpoint blockade therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号