Genome size

基因组大小
  • 文章类型: Journal Article
    在2,000多种粉虱中(半翅目:假球菌科),到目前为止,只有13个基因组被发表,严重限制了对该群体的系统发育和适应性进化的研究。不断出版的粉虱基因组将大大促进我们的生物学特性的探索,有害属性,以及假球菌科的控制策略。JackBeardsleymealybug(Pseudococcusjackbeardsleyi)作为一种有害的入侵害虫,这可能会给全世界的水果和蔬菜行业造成巨大损失。在这里,我们结合了长读的纳米孔,短读数Illumina和Hi-C测序,产生高质量的P.jackbeardsleyi的染色体水平基因组组装。基因组大小被确定为334.818Mb,组装成5个连接基团,N50为67.233Mb。BUSCO分析表明,基因组组装和注释的完整性分别为95.7%和92.8%,分别。已开发的高质量基因组将成为深入研究P.jackbeardsleyi入侵的遗传机制的资产,从而为假球菌害虫的预防和管理提供了重要的理论基础。
    Among over 2,000 species of mealybugs (Hemiptera: Pseudococcidae), only 13 genomes have been published so far, seriously limiting the researches on the phylogeny and adaptive evolution of this group. The continuous publication of mealybug genomes will significantly facilitate our exploration of the biological characteristics, detrimental attributes, and control strategies of the Pseudococcidae family. Jack Beardsley mealybug (Pseudococcus jackbeardsleyi) as one of the hazardous invasive pests, it could cause enormous losses to the fruit and vegetable industries worldwide. Herein, we combined Nanopore long-read, short-read Illumina and Hi-C sequencing, generating a high-quality chromosome-level genome assembly of P. jackbeardsleyi. The genome size was determined to be 334.818 Mb, which was assembled into 5 linkage groups with a N50 of 67.233 Mb. The BUSCO analysis demonstrated the completeness of the genome assembly and annotation are 95.7% and 92.8%, respectively. The developed high-quality genome will serve as an asset for delving into the genetic mechanisms underlying the invasiveness of P. jackbeardsleyi, thereby offering a crucial theoretical foundation for the prevention and management of Pseudococcidae pests.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Pamphagidae是Acridoidea家族,栖息在欧亚大陆和非洲的沙漠草原上。这项研究采用流式细胞术估算了Pamphagidae中八个物种的基因组大小。结果表明,这8个物种的基因组大小在13.88pg至14.66pg之间,平均14.26pg。这是直翅目家族记录的最大平均基因组大小,以及整个昆虫。此外,这项研究探索了重复序列在基因组中的作用,包括它们的进化动力学和活动,使用低覆盖率的下一代测序数据。基因组由14种不同类型的重复序列组成,它们总共占总基因组的59.9%至68.17%。Pamphagidae家族表现出高水平的转座因子(TE)活性,随着家庭出现以来TEs数量的增加和积累。研究发现,导致TE爆发事件的重复序列类型在物种之间相似。此外,这项研究为每个物种确定了独特的重复元素。八个Pamphagidae物种之间重复序列的差异与其系统发育关系相对应。该研究为Pamphagidae的基因组巨人症提供了新的思路,并提供了对基因组大小与家族内重复序列之间相关性的见解。
    Pamphagidae is a family of Acridoidea that inhabits the desert steppes of Eurasia and Africa. This study employed flow cytometry to estimate the genome size of eight species in the Pamphagidae. The results indicate that the genome size of the eight species ranged from 13.88 pg to 14.66 pg, with an average of 14.26 pg. This is the largest average genome size recorded for the Orthoptera families, as well as for the entire Insecta. Furthermore, the study explored the role of repetitive sequences in the genome, including their evolutionary dynamics and activity, using low-coverage next-generation sequencing data. The genome is composed of 14 different types of repetitive sequences, which collectively make up between 59.9% and 68.17% of the total genome. The Pamphagidae family displays high levels of transposable element (TE) activity, with the number of TEs increasing and accumulating since the family\'s emergence. The study found that the types of repetitive sequences contributing to the TE outburst events are similar across species. Additionally, the study identified unique repetitive elements for each species. The differences in repetitive sequences among the eight Pamphagidae species correspond to their phylogenetic relationships. The study sheds new light on genome gigantism in the Pamphagidae and provides insight into the correlation between genome size and repetitive sequences within the family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通常认为基因组大小和错误率之间存在基本关系,显示为概念上的“错误阈值”,它设置了基因组大小的上限。RNA病毒的基因组大小,由于缺乏纠错机制,它们具有固有的高突变率,因此必须很小,以避免积累过多的有害突变,最终导致种群灭绝。该进化规则的提议例外是来自Nidovirales顺序的RNA病毒(例如冠状病毒),其编码纠错核酸外切酶,使它们能够达到大于40kb的基因组长度。最近发现的大基因组黄病毒(黄病毒科),它们包含长度高达27kb的基因组,但似乎不编码外切核酸酶结构域,提出了这样的建议,即需要一种校对机制来促进30kb以上的非分段RNA病毒基因组的扩展。在这里,我们描述了在Haliclona海绵转移基因组中鉴定出的约40kb的类黄酮病毒,该病毒不编码已知的外切核酸酶。结构分析显示,该病毒可能已经捕获了与核酸代谢相关的细胞结构域,这些结构域以前在RNA病毒中没有发现过。系统发育推断将这种病毒作为一个不同的pesti-like谱系,所以我们暂时称之为“马克西姆斯pesti样病毒”。“这种病毒代表了一种类黄酮病毒的实例,其基因组大小与Nidovirales相当,并表明RNA病毒已经进化出多种解决方案来克服错误阈值。
    It is commonly held that there is a fundamental relationship between genome size and error rate, manifest as a notional \"error threshold\" that sets an upper limit on genome sizes. The genome sizes of RNA viruses, which have intrinsically high mutation rates due to a lack of mechanisms for error correction, must therefore be small to avoid accumulating an excessive number of deleterious mutations that will ultimately lead to population extinction. The proposed exceptions to this evolutionary rule are RNA viruses from the order Nidovirales (such as coronaviruses) that encode error-correcting exonucleases, enabling them to reach genome lengths greater than 40 kb. The recent discovery of large-genome flavi-like viruses (Flaviviridae), which comprise genomes up to 27 kb in length yet seemingly do not encode exonuclease domains, has led to the proposal that a proofreading mechanism is required to facilitate the expansion of nonsegmented RNA virus genomes above 30 kb. Herein, we describe a ~40 kb flavi-like virus identified in a Haliclona sponge metatranscriptome that does not encode a known exonuclease. Structural analysis revealed that this virus may have instead captured cellular domains associated with nucleic acid metabolism that have not been previously found in RNA viruses. Phylogenetic inference placed this virus as a divergent pesti-like lineage, such that we have provisionally termed it \"Maximus pesti-like virus.\" This virus represents an instance of a flavi-like virus achieving a genome size comparable to that of the Nidovirales and demonstrates that RNA viruses have evolved multiple solutions to overcome the error threshold.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Dataset
    大多数以韧皮部为食的昆虫面临营养不足,并依靠其细胞内共生体提供营养,大多数内共生体基因组都经历了减少。然而,内共生体基因组减少过程的研究受到来自不同昆虫谱系的基因组数据有限的限制。蚜虫与Buchnera蚜虫(以下简称Buchnera)之间的专性关系使其成为研究昆虫-内共生体相互作用的经典模型。这里,我们报告了来自11个蚜虫亚家族的29个新测序的Buchnera基因组,和一个基于来自14个蚜虫亚科的90个Buchnera基因组的综合数据集。数据集显示不同蚜虫谱系之间Buchnera的显着基因组差异。该数据集显示出Buchnera(来自14个蚜虫亚家族)基因组大小的更平衡分布,从400kb到600kb,这可以说明Buchnera的基因组减少过程。新的基因组数据为导致昆虫内共生体基因组减少的微观进化过程提供了有价值的见解。
    Most phloem-feeding insects face nutritional deficiency and rely on their intracellular symbionts to provide nutrients, and most of endosymbiont genomes have undergone reduction. However, the study of genome reduction processes of endosymbionts has been constrained by the limited availability of genome data from different insect lineages. The obligate relationship between aphids and Buchnera aphidicola (hereafter Buchnera) makes them a classic model for studying insect-endosymbiont interaction. Here, we report 29 newly sequenced Buchnera genomes from 11 aphid subfamilies, and a comprehensive dataset based on 90 Buchnera genomes from 14 aphid subfamilies. The dataset shows a significant genomic difference of Buchnera among different aphid lineages. The dataset exhibits a more balanced distribution of Buchnera (from 14 aphid subfamilies) genome sizes, ranging from 400 kb to 600 kb, which can illustrate the genome reduction process of Buchnera. The new genome data provide valuable insights into the microevolutionary processes leading to genomic reduction of insect endosymbionts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:线虫是地球上最丰富和多样化的后生动物,并且已知会严重影响生态系统功能。更好地了解他们的生物学和生态学,包括对不同栖息地和生活方式的潜在适应,是了解他们对全球变化情景的反应的关键。线粒体基因组提供了高物种水平的表征,测序成本低,和易于数据处理,可以提供对线虫进化压力的见解。
    结果:一般来说,线虫线粒体基因组表现出相似的结构特征(例如,基因大小和GC含量),但围绕这些一般模式显示出显著的可变性。组成链偏差显示出强烈的密码子位置特异性G偏斜,并且与线虫生命特征(尤其是寄生摄食习性)的关系等于或大于与预测的系统发育。平均而言,线虫线粒体基因组显示出低的非同义替换率,而且与这些手段的具体偏差也很高。尽管存在显著的突变饱和,非同义(dN)和同义(dS)替代率仍然可以通过摄食习惯和/或栖息地来解释。dN:dS比率低,特别是与寄生虫的生活方式有关,建议存在强大的净化选择。
    结论:线虫线粒体基因组表现出积累成分多样性的能力,结构,和内容,同时仍然保持功能基因。此外,他们展示了快速进化变化的能力,指出多层次选择压力和快速进化之间的潜在相互作用。总之,这项研究有助于为我们理解形成线虫线粒体基因组的潜在进化压力奠定基础,同时概述了未来可能的调查路线。
    BACKGROUND: Nematodes are the most abundant and diverse metazoans on Earth, and are known to significantly affect ecosystem functioning. A better understanding of their biology and ecology, including potential adaptations to diverse habitats and lifestyles, is key to understanding their response to global change scenarios. Mitochondrial genomes offer high species level characterization, low cost of sequencing, and an ease of data handling that can provide insights into nematode evolutionary pressures.
    RESULTS: Generally, nematode mitochondrial genomes exhibited similar structural characteristics (e.g., gene size and GC content), but displayed remarkable variability around these general patterns. Compositional strand biases showed strong codon position specific G skews and relationships with nematode life traits (especially parasitic feeding habits) equal to or greater than with predicted phylogeny. On average, nematode mitochondrial genomes showed low non-synonymous substitution rates, but also high clade specific deviations from these means. Despite the presence of significant mutational saturation, non-synonymous (dN) and synonymous (dS) substitution rates could still be significantly explained by feeding habit and/or habitat. Low ratios of dN:dS rates, particularly associated with the parasitic lifestyles, suggested the presence of strong purifying selection.
    CONCLUSIONS: Nematode mitochondrial genomes demonstrated a capacity to accumulate diversity in composition, structure, and content while still maintaining functional genes. Moreover, they demonstrated a capacity for rapid evolutionary change pointing to a potential interaction between multi-level selection pressures and rapid evolution. In conclusion, this study helps establish a background for our understanding of the potential evolutionary pressures shaping nematode mitochondrial genomes, while outlining likely routes of future inquiry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:Coreopsideae部落,菊科的一个子集,包括像大丽花这样重要的经济属,宇宙,还有Bidens,广泛用于医学,园艺,生态学,和食品应用。然而,缺乏参考基因组阻碍了该部落的进化和生物学研究。
    结果:这里,我们提出了3个单倍型分辨的染色体水平参考基因组的部落科雷氏,包括2种流行的开花植物(大丽花和Cosmosbipinnatus)和1种入侵杂草植物(Bidensalba),组装的基因组大小为3.93G,1.02G,和1.87G,分别。我们发现吉普赛转座因子主要有助于D.pinnata的更大基因组大小,并且在Coreopsideae部落中发生了多个染色体重排。除了Heliantheae联盟中共享的全基因组复制(WGD-2)之外,我们的分析表明,D.pinnata和B.alba各自经历了一个独立的最近WGD-3事件:在D.pinnata,它更有可能是一个自我WGD,而在B.alba,它来自2种祖先物种的杂交。Further,我们确定了菊粉代谢途径中的关键基因,并发现D.pinnata中1-FEH1和1-FEH2基因的假基因化以及C.bipinnatus和B.alba中1-FFT蛋白的3个关键残基的缺失可能解释了为什么D.pinnata比其他2种植物产生更多的菊粉。
    结论:总的来说,Coreopsideae部落的基因组资源将促进菊科植物的系统基因组学,促进观赏分子育种改进和菊粉生产,并帮助防止入侵杂草。
    The Coreopsideae tribe, a subset of the Asteraceae family, encompasses economically vital genera like Dahlia, Cosmos, and Bidens, which are widely employed in medicine, horticulture, ecology, and food applications. Nevertheless, the lack of reference genomes hinders evolutionary and biological investigations in this tribe.
    Here, we present 3 haplotype-resolved chromosome-level reference genomes of the tribe Coreopsideae, including 2 popular flowering plants (Dahlia pinnata and Cosmos bipinnatus) and 1 invasive weed plant (Bidens alba), with assembled genome sizes 3.93 G, 1.02 G, and 1.87 G, respectively. We found that Gypsy transposable elements contribute mostly to the larger genome size of D. pinnata, and multiple chromosome rearrangements have occurred in tribe Coreopsideae. Besides the shared whole-genome duplication (WGD-2) in the Heliantheae alliance, our analyses showed that D. pinnata and B. alba each underwent an independent recent WGD-3 event: in D. pinnata, it is more likely to be a self-WGD, while in B. alba, it is from the hybridization of 2 ancestor species. Further, we identified key genes in the inulin metabolic pathway and found that the pseudogenization of 1-FEH1 and 1-FEH2 genes in D. pinnata and the deletion of 3 key residues of 1-FFT proteins in C. bipinnatus and B. alba may probably explain why D. pinnata produces much more inulin than the other 2 plants.
    Collectively, the genomic resources for the Coreopsideae tribe will promote phylogenomics in Asteraceae plants, facilitate ornamental molecular breeding improvements and inulin production, and help prevent invasive weeds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌基因组大小反映了细菌的进化过程和代谢生活方式,对微生物群落组装和生态系统功能具有重要意义。然而,为了了解基因组介导的微生物对环境选择的反应程度,我们需要研究观察基因组大小分布沿环境梯度代表土壤细菌通常遇到的不同条件。在这项研究中,我们使用了从全球237个地点收集的地表土壤,并分析了环境条件(例如,土壤碳和养分,干旱,pH值,和温度)使用细菌群落分析在群落水平上影响土壤细菌的发生和基因组大小。我们使用联合物种分布模型来量化环境对物种发生的影响,发现干旱是基因组大小的主要调节因子,而温暖和干燥的环境选择基因组较小的细菌。干旱对细菌生长的生理限制(例如,细胞代谢的缺水)可能导致了这些相关性。这一发现表明,增加温暖和干燥的生态系统的覆盖率可能会通过减少基因组大小而导致细菌基因组简化。
    Bacterial genome size reflects bacterial evolutionary processes and metabolic lifestyles, with implications for microbial community assembly and ecosystem functions. However, to understand the extent of genome-mediated microbial responses to environmental selections, we require studies that observe genome size distributions along environmental gradients representing different conditions that soil bacteria normally encounter. In this study, we used surface soils collected from 237 sites across the globe and analyzed how environmental conditions (e.g., soil carbon and nutrients, aridity, pH, and temperature) affect soil bacterial occurrences and genome size at the community level using bacterial community profiling. We used a joint species distribution model to quantify the effects of environments on species occurrences and found that aridity was a major regulator of genome size with warmer and drier environments selecting bacteria with smaller genomes. Drought-induced physiological constraints on bacterial growth (e.g., water scarcity for cell metabolisms) may have led to these correlations. This finding suggests that increasing cover by warmer and drier ecosystems may result in bacterial genome simplifications by a reduction of genome size.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    宿主专业化在植物-微生物共生的生态学和进化中起着至关重要的作用。理论预测,宿主特化与微生物基因组精简有关,并受宿主物种丰度的影响,两者都可能因纬度而异,导致宿主特异性的纬度梯度。这里,我们量化了跨纬度梯度的329个树种叶片上植物-细菌共生的宿主特异性和组成。我们的分析表明,宿主专门的叶片细菌占主导地位。宿主特异性程度与细菌基因组大小和寄主植物的局部丰度呈负相关。此外,我们发现低纬度地区的宿主特异性增强,与热带地区小细菌基因组和稀有宿主物种的高患病率保持一致。这些发现强调了基因组精简和宿主丰度在植物相关细菌沿纬度梯度的宿主特异性进化中的重要性。
    Host specialization plays a critical role in the ecology and evolution of plant-microbe symbiosis. Theory predicts that host specialization is associated with microbial genome streamlining and is influenced by the abundance of host species, both of which can vary across latitudes, leading to a latitudinal gradient in host specificity. Here, we quantified the host specificity and composition of plant-bacteria symbioses on leaves across 329 tree species spanning a latitudinal gradient. Our analysis revealed a predominance of host-specialized leaf bacteria. The degree of host specificity was negatively correlated with bacterial genome size and the local abundance of host plants. Additionally, we found an increased host specificity at lower latitudes, aligning with the high prevalence of small bacterial genomes and rare host species in the tropics. These findings underscore the importance of genome streamlining and host abundance in the evolution of host specificity in plant-associated bacteria along the latitudinal gradient.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    气孔调节对于红树林在潮间带的高盐分区生存至关重要,那里的水分胁迫严重且水的可利用性高度波动。然而,对红树林气孔对蒸气压不足(VPD)的敏感性知之甚少,及其与气孔形态和叶片水力性状的协调。我们测量了气孔对原位VPD阶跃增加的反应,气孔解剖学,五个科九个真红树林的叶片水力脆弱性和压力-体积性状,并收集了基因组大小数据。我们旨在回答两个问题:(1)气孔形态是否会影响红树林中高VPD的气孔动态?考虑到基因组大小对气孔形态的可能影响;(2)叶片水力性状是否会影响红树林中气孔对VPD的敏感性?我们发现红树林植物的气孔对VPD的逐步上升高度敏感,气孔响应直接受气孔解剖和水力特征的影响。较小,在根茎科物种的高VPD下,较致密的气孔与较快的气孔关闭相关,气孔大小和静脉密度与基因组大小呈负相关。全膨时较低的叶片渗透压(πo)与较高的工作稳态气孔导度(gs)有关;较高的叶片电容(Cleaf)和较多抗栓塞的叶片木质部与对VPD增加的气孔反应较慢有关。此外,气孔对VPD的反应性受到叶片形态性状的间接影响,受场地盐度和叶水状况的影响。我们的结果表明,红树林显示基因组大小之间的独特关系,气孔大小和静脉填塞,气孔对VPD的响应受叶片水力特性和气孔形态调节。我们的工作提供了一个定量框架,以更好地了解在高盐度和动态水可利用性的环境中红树林的气孔调节。
    Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant. However, very little is known about the stomatal sensitivity to vapour pressure deficit (VPD) in mangroves, and its co-ordination with stomatal morphology and leaf hydraulic traits. We measured the stomatal response to a step increase in VPD in situ, stomatal anatomy, leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size. We aimed to answer two questions: (1) Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves? with a consideration of possible influence of genome size on stomatal morphology; and (2) do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves? We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits. Smaller, denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae, and stomata size negatively and vein density positively correlated with genome size. Less negative leaf osmotic pressure at the full turgor (πo) was related to higher operating steady-state stomatal conductance (gs); and a higher leaf capacitance (Cleaf) and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD. In addition, stomatal responsiveness to VPD was indirectly affected by leaf morphological traits, which were affected by site salinity and consequently leaf water status. Our results demonstrate that mangroves display a unique relationship between genome size, stomatal size and vein packing, and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology. Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Dataset
    榕属物种(桑科)在热带和亚热带生态系统中起着举足轻重的作用。在不同的栖息地蓬勃发展,从雨林到沙漠,它们与昆虫有许多相互对立的相互作用,线虫,和病原体。尽管它们具有生态意义,关于Ficus基因组背景的知识仍然有限。在这项研究中,我们报告了F.hirta的染色体水平参考基因组,总尺寸为297.27Mb,含有28,625个蛋白质编码基因和44.67%的重复序列。这些发现阐明了榕树应对环境挑战的遗传基础,为了解基因组大小提供宝贵的基因组资源,适应性进化,并与该属内的天敌和互惠主义者共同进化。
    Ficus species (Moraceae) play pivotal roles in tropical and subtropical ecosystems. Thriving across diverse habitats, from rainforests to deserts, they harbor a multitude of mutualistic and antagonistic interactions with insects, nematodes, and pathogens. Despite their ecological significance, knowledge about the genomic background of Ficus remains limited. In this study, we report a chromosome-level reference genome of F. hirta, with a total size of 297.27 Mb, containing 28,625 protein-coding genes and 44.67% repeat sequences. These findings illuminate the genetic basis of Ficus responses to environmental challenges, offering valuable genomic resources for understanding genome size, adaptive evolution, and co-evolution with natural enemies and mutualists within the genus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号