Flavivirus

黄病毒
  • 文章类型: Journal Article
    自噬是一种溶酶体降解途径,调节真核细胞的稳态。该途径可以降解错误折叠或聚集的蛋白质,清除受损的细胞器,消除细胞内病原体,包括病毒,细菌,和寄生虫。但是,并非所有类型的病毒都被自噬消除。黄病毒(例如,黄热病,日本脑炎,丙型肝炎,登革热,Zika,和西尼罗河病毒)是单链和包膜RNA病毒,主要通过节肢动物的叮咬传播给人类,导致严重和广泛的疾病。就像冠状病毒SARS-CoV-II,黄病毒劫持自噬以感染并逃避宿主免疫清除。因此,有可能通过抑制自噬来控制这些病毒感染。在这次审查中,本文总结了黄病毒劫持自噬的最新研究进展,并讨论了使用自噬抑制剂进行抗病毒治疗的可行性。
    Autophagy is a lysosomal degradative pathway, which regulates the homeostasis of eukaryotic cells. This pathway can degrade misfolded or aggregated proteins, clear damaged organelles, and eliminate intracellular pathogens, including viruses, bacteria, and parasites. But, not all types of viruses are eliminated by autophagy. Flaviviruses (e.g., Yellow fever, Japanese encephalitis, Hepatitis C, Dengue, Zika, and West Nile viruses) are single-stranded and enveloped RNA viruses, and transmitted to humans primarily through the bites of arthropods, leading to severe and widespread illnesses. Like the coronavirus SARS-CoV-II, flaviviruses hijack autophagy for their infection and escape from host immune clearance. Thus, it is possible to control these viral infections by inhibiting autophagy. In this review, we summarize recent research progresses on hijacking of autophagy by flaviviruses and discuss the feasibility of antiviral therapies using autophagy inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    黄病毒的传播,如登革热病毒(DENV)和寨卡病毒(ZIKV),对全球公共卫生构成重大威胁。张等人。最近显示Rosenbergiellasp.YN46(Rosenbergiella_YN46),一种来自蚊子肠道的细菌,抑制黄病毒的传播,因此提供了具有广泛公共卫生影响的潜在生物控制策略。
    The transmission of flaviviruses, such as dengue virus (DENV) and Zika virus (ZIKV), poses a significant threat to global public health. Zhang et al. recently showed that Rosenbergiella sp. YN46 (Rosenbergiella_YN46), a bacterium from the mosquito gut, inhibits flavivirus transmission and thus offers a potential biocontrol strategy with broad public health implications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:黄病毒在全世界都是一个挑战。黄病毒的复制发生在源自内质网(ER)的膜复制区室(RC)内。黄病毒NS1蛋白已被证明对于通过重塑ER形成病毒RC是必不可少的。黄病毒NS1蛋白的糖基化对病毒复制很重要,然而潜在的机制仍不清楚.
    方法:HeLa细胞用于观察NS1表达诱导的ER重塑效应。用BHK-21细胞进行ZIKV复制子荧光素酶测定。从BHK-21细胞产生rZIKV,并且用Vero细胞进行噬斑测定。用来自293T细胞的纯化的NS1蛋白进行脂质体共漂浮测定。
    结果:我们发现黄病毒NS1的糖基化有助于其ER重塑活性。NS1的糖基化缺陷,通过N-糖基化位点突变或衣霉素治疗,损害其ER重塑活性并干扰病毒RC的形成。NS1糖基化的破坏导致NS1的异常聚集,而不是降低其膜结合活性。因此,NS1糖基化缺陷会损害病毒复制。
    结论:总之,我们的研究结果强调了NS1糖基化在黄病毒复制中的重要性,并阐明了其潜在机制.这为对抗黄病毒感染提供了新的策略。
    BACKGROUND: Flavivirus is a challenge all over the world. The replication of flavivirus takes place within membranous replication compartments (RCs) derived from endoplasmic reticulum (ER). Flavivirus NS1 proteins have been proven essential for the formation of viral RCs by remodeling the ER. The glycosylation of flavivirus NS1 proteins is important for viral replication, yet the underlying mechanism remains unclear.
    METHODS: HeLa cells were used to visualize the ER remodeling effects induced by NS1 expression. ZIKV replicon luciferase assay was performed with BHK-21 cells. rZIKV was generated from BHK-21 cells and the plaque assay was done with Vero Cells. Liposome co-floating assay was performed with purified NS1 proteins from 293T cells.
    RESULTS: We found that the glycosylation of flavivirus NS1 contributes to its ER remodeling activity. Glycosylation deficiency of NS1, either through N-glycosylation sites mutations or tunicamycin treatment, compromises its ER remodeling activity and interferes with viral RCs formation. Disruption of NS1 glycosylation results in abnormal aggregation of NS1, rather than reducing its membrane-binding activity. Consequently, deficiency in NS1 glycosylation impairs virus replication.
    CONCLUSIONS: In summary, our results highlight the significance of NS1 glycosylation in flavivirus replication and elucidate the underlying mechanism. This provides a new strategy for combating flavivirus infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蜱传的正黄病毒(TBF)根据遗传学和生态学分为三个常规组:哺乳动物,海鸟和可能的TBF组。最近,在非洲的Rhipicephalus蜱中发现了第四个基础组:赞比亚的Mpulungu黄病毒(MPFV)和塞内加尔的Ngoye病毒(NGOV)。尽管尝试,在脊椎动物和无脊椎动物细胞系中分离这些病毒,或用含病毒的匀浆在脑内注射新生小鼠仍然不成功。在这项研究中,我们报告了在Xänyáng的黄条上发现的信阳黄病毒(XiFV),河南省,中国。系统发育分析表明,XiFV与MPFV和NGOV的关系最为密切,标志着这种蜱正黄病毒在亚洲的首次鉴定。我们开发了一种逆转录酶定量PCR检测方法来筛选野生收集的蜱和卵,成年女性的绝对感染率为20.75%,卵离合器的绝对感染率为15.19%,这表明XiFV可能通过经静脉曲张传播。要检查潜在的主机范围,二核苷酸组成分析表明,XiFV,与感染脊椎动物的TBF相比,MPFV和NGOV与经典的昆虫特异性正黄病毒具有更紧密的组成,这表明XiFV可能是一种只有蜱的正黄病毒。此外,XiFV和MPFV在prM蛋白中都缺乏弗林蛋白酶切割位点,与其他TBF不同,这表明这些病毒可能存在于有偏见的未成熟粒子状态。为了检查这一点,产生了具有XIFV-prME(bXiFV)的嵌合Binjari病毒,通过SDS-PAGE和负染色透射电子显微镜纯化和分析,表明原型正黄病毒大小(〜50nm)和偏向未切割的PRM。在3个非翻译区的计算机结构分析中,XiFV形成了多达五个含有假结的茎环和典型的正黄病毒哑铃元件,提示多种抗核糖核酸酶RNA结构的潜力。
    Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3\'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鸭坦布苏病毒(DTMUV)是黄病毒科的病原体,可导致家禽感染,导致近年来养鸭业的重大经济损失。感染这种病毒的鸭子表现出临床症状,如产蛋减少和神经系统疾病,伴随着严重的后果如卵巢出血,器官增大,和坏死。不同年龄段鸭子的发病率和死亡率存在差异。值得注意的是,DTMUV不仅限于鸭子;它还可以传播到其他家禽,如鸡和鹅,甚至在养鸭场工人中也发现了与DTMUV相关的抗体,提示人畜共患传播的潜在风险。本文提供了DTMUV研究的详细概述,深入研究其基因组特征,疫苗,以及与宿主免疫反应的相互作用。这些深入的研究成果有助于更全面地了解病毒的传播机制和致病过程,为疫情防控提供至关重要的科学支持。
    Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus\'s transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    黄病毒属包括许多蚊子传播的人类病原体,例如Zika(ZIKV)和登革热(DENV1-4)病毒的四种血清型,这影响了数十亿人,正如世界上许多国家和地区的流行病和地方病所证明的那样。在病毒基因组编码的10种病毒蛋白中,非结构蛋白1(NS1)是唯一的分泌蛋白,已被用作诊断生物标志物.NS1也因其作为疫苗抗原的生物治疗潜力而成为有吸引力的靶标。这篇综述着重于分泌的NS1(sNS1)及其与单克隆抗体(mAb)的复合物的结构景观的最新进展。NS1形成强制性二聚体,分泌后,据报道,它是六聚体(三聚体二聚体),可以解离并结合到上皮细胞膜上。然而,关于sNS1的高阶寡聚态的高分辨率结构信息一直缺失。一些冷冻EM研究表明,DENV和ZIKV重组sNS1(rsNS1)处于二聚体-四聚体-六聚体状态的动态平衡,四聚体是主要形式。最近发现,感染来源的sNS1(isNS1)形成了部分嵌入高密度脂蛋白(HDL)颗粒中的NS1二聚体的复合物。还报道了与mAb的复合物中NS1的结构,这些结构阐明了它们在感染过程中的保护作用。NS1寡聚态多样性的生物学意义还有待进一步研究,为黄病毒致病机理的未来研究以及治疗和疫苗的开发提供信息。鉴于黄病毒NS1在样品类型中的多态性与抗原性的变化,我们提出了一个术语来准确地定义NS1的定位和起源。
    The genus of flavivirus includes many mosquito-borne human pathogens, such as Zika (ZIKV) and the four serotypes of dengue (DENV1-4) viruses, that affect billions of people as evidenced by epidemics and endemicity in many countries and regions in the world. Among the 10 viral proteins encoded by the viral genome, the nonstructural protein 1 (NS1) is the only secreted protein and has been used as a diagnostic biomarker. NS1 has also been an attractive target for its biotherapeutic potential as a vaccine antigen. This review focuses on the recent advances in the structural landscape of the secreted NS1 (sNS1) and its complex with monoclonal antibodies (mAbs). NS1 forms an obligatory dimer, and upon secretion, it has been reported to be hexametric (trimeric dimers) that could dissociate and bind to the epithelial cell membrane. However, high-resolution structural information has been missing about the high-order oligomeric states of sNS1. Several cryoEM studies have since shown that DENV and ZIKV recombinant sNS1 (rsNS1) are in dynamic equilibrium of dimer-tetramer-hexamer states, with tetramer being the predominant form. It was recently revealed that infection-derived sNS1 (isNS1) forms a complex of the NS1 dimer partially embedded in a High-Density Lipoprotein (HDL) particle. Structures of NS1 in complexes with mAbs have also been reported which shed light on their protective roles during infection. The biological significance of the diversity of NS1 oligomeric states remains to be further studied, to inform future research on flaviviral pathogenesis and the development of therapeutics and vaccines. Given the polymorphism of flavivirus NS1 across sample types with variations in antigenicity, we propose a nomenclature to accurately define NS1 based on the localization and origin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    鸭坦布苏病毒(DTMUV)属于黄病毒科,主要感染鸭。DTMUV的基因组被翻译成多蛋白,通过病毒NS2B3蛋白酶和宿主蛋白酶进一步裂解成几种蛋白质。至关重要的是,在此过程中NS2A/2B前体的切割对于复制复合物的形成和病毒包装是必需的。先前的研究表明,NS2A/2B(P1P1'(AA))中的丙氨酸突变通过破坏NS2A/2B切割导致减毒菌株(rDTMUV-NS2A/2B-P1P1'(AA))。在这项研究中,我们研究了P1P1'(AA)突变对病毒生命周期的影响,并探讨了rDTMUV-NS2A/2B-P1P1'(AA)的代偿突变。感染的小鸭表现出与DTMUV-WT相似的体重增加和病毒组织负荷。代偿突变E-M349E和P1(T)出现,恢复rDTMUV-WT的增殖水平。具体来说,E-M349E增强病毒包装,而P1(T)在体外恢复NS2A/2B蛋白水解。因此,我们的发现揭示了能够在多蛋白裂解和包装过程中恢复衰减的DTMUV的新代偿位点。
    Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. The genome of DTMUV is translated into a polyprotein, which is further cleaved into several protein by viral NS2B3 protease and host proteases. Crucially, the cleavage of the NS2A/2B precursor during this process is essential for the formation of replication complexes and viral packaging. Previous research has demonstrated that alanine mutations in NS2A/2B (P1P1\' (AA)) result in an attenuated strain (rDTMUV-NS2A/2B-P1P1\' (AA)) by disrupting NS2A/2B cleavage. In this study, we investigate the effects of the P1P1\' (AA) mutation on the viral life cycle and explore compensatory mutations in rDTMUV-NS2A/2B-P1P1\' (AA). Infected ducklings exhibit similar body weight gain and viral tissue loads to DTMUV-WT. Compensatory mutations E-M349E and P1(T) emerge, restoring proliferation levels to those of rDTMUV-WT. Specifically, E-M349E enhances viral packaging, while P1(T) reinstates NS2A/2B proteolysis in vitro. Thus, our findings reveal novel compensatory sites capable of restoring the attenuated DTMUV during polyprotein cleavage and packaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    黄病毒编码一种保守的,具有复制和免疫逃避功能的膜相关非结构蛋白1(NS1)。分泌的NS1(sNS1)寡聚体的当前知识基于几种低分辨率结构,从而阻碍了针对黄病毒的药物和疫苗的开发。这里,我们揭示了来自黄病毒的重组sNS1以二聚体-四聚体-六聚体状态的动态平衡存在。通过cryo-EM以原子分辨率解析来自多种黄病毒的两个DENV4六聚体NS1结构和几个四聚体NS1结构。通过疏水性β-辊和连接体结构域促进四聚体NS1和六聚体NS1的堆叠。此外,位于中央腔内的三酰基甘油分子可能在稳定六聚体中起作用。基于二聚体NS1之间的不同相互作用,提出了两种不同的六聚体模型(头对头和侧对侧六聚体)以及NS1二聚体逐步组装到六聚体中的机制。我们相信,我们的研究揭示了对NS1寡聚化的理解,并有助于基于NS1的治疗。
    Flaviviruses encode a conserved, membrane-associated nonstructural protein 1 (NS1) with replication and immune evasion functions. The current knowledge of secreted NS1 (sNS1) oligomers is based on several low-resolution structures, thus hindering the development of drugs and vaccines against flaviviruses. Here, we revealed that recombinant sNS1 from flaviviruses exists in a dynamic equilibrium of dimer-tetramer-hexamer states. Two DENV4 hexameric NS1 structures and several tetrameric NS1 structures from multiple flaviviruses were solved at atomic resolution by cryo-EM. The stacking of the tetrameric NS1 and hexameric NS1 is facilitated by the hydrophobic β-roll and connector domains. Additionally, a triacylglycerol molecule located within the central cavity may play a role in stabilizing the hexamer. Based on differentiated interactions between the dimeric NS1, two distinct hexamer models (head-to-head and side-to-side hexamer) and the step-by-step assembly mechanisms of NS1 dimer into hexamer were proposed. We believe that our study sheds light on the understanding of the NS1 oligomerization and contributes to NS1-based therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蚊子肠道的共生微生物群在确定虫媒病毒的载体能力中起着复杂的作用。在这项研究中,我们从田间白纹伊蚊的肠道中鉴定出一种细菌,名为Rosenbergiellasp。YN46(Rosenbergiella_YN46)使蚊子难以感染登革热和寨卡病毒。将1.6×103个Rosenbergiella_YN46的菌落形成单位(CFU)接种到白纹蚊子中,可以有效地防止病毒感染。机械上,这种细菌分泌葡萄糖脱氢酶(RyGDH),会酸化喂食蚊子的肠腔,引起黄病毒包膜蛋白不可逆的构象变化,阻止病毒进入细胞。在半场条件下,Rosenbergiella_YN46在野外蚊子中表现出有效的跨体育场传播,阻止新出现的成年蚊子传播登革热病毒。来自低登革热地区的蚊子中Rosenbergiella_YN46的患病率(52.9至〜91.7%)高于登革热流行地区的蚊子(0至〜6.7%)。Rosenbergiella_YN46可能为黄病毒生物防治提供有效和安全的铅。
    The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    鸭坦布苏病毒(DTMUV)属于黄病毒科,主要感染鸭。鸭Tembusu病毒基因组编码一种经过切割产生10种蛋白质的多蛋白。其中,NS4B,最大的跨膜蛋白,在病毒生命周期中起着至关重要的作用。在这项研究中,我们调查了NS4B的定位,发现它位于内质网,它与DTMUVdsRNA共定位。随后,我们证实了NS4B的5个不同的跨膜结构域,并发现只有其跨膜结构域3(TMD3)可以穿过ER膜。然后在DTMUV复制子和感染性克隆的NS4BTMD3的保守氨基酸中引入突变。结果表明,V111G,V117G,和I118G突变增强病毒RNA复制,而Q104A,T106A,A113L,M116A,H120A,Y121A,和A122G突变减少病毒复制。在BHK21细胞中拯救并研究了具有这些突变的重组病毒。研究结果表明,A113L和H120A突变导致比野生型菌株更高的病毒滴度,而Q104A,T106A,V111G,V117G,和Y121A突变减弱病毒增殖。此外,H120A,M116A,和A122G突变增强病毒增殖。此外,Q104A,T106A,V111G,M116A,V117G,Y121A,A122G突变体对10d鸭胚的病毒毒力降低。动物实验进一步表明,与感染后5天的WT组相比,所有突变病毒导致脾脏中更低的基因组拷贝数。我们的数据提供了对DTMUVNS4B拓扑模型的见解,强调NS4BTMD3在病毒复制和增殖中的重要作用。
    Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. Duck Tembusu virus genome encodes one polyprotein that undergoes cleavage to produce 10 proteins. Among these, NS4B, the largest transmembrane protein, plays a crucial role in the viral life cycle. In this study, we investigated the localization of NS4B and found that it is located in the endoplasmic reticulum, where it co-localizes with DTMUV dsRNA. Subsequently, we confirmed 5 different transmembrane domains of NS4B and discovered that only its transmembrane domain 3 (TMD3) can traverse ER membrane. Then mutations were introduced in the conserved amino acids of NS4B TMD3 of DTMUV replicon and infectious clone. The results showed that V111G, V117G, and I118G mutations enhanced viral RNA replication, while Q104A, T106A, A113L, M116A, H120A, Y121A, and A122G mutations reduced viral replication. Recombinant viruses with these mutations were rescued and studied in BHK21 cells. The findings demonstrated that A113L and H120A mutations led to higher viral titers than the wild-type strain, while Q104A, T106A, V111G, V117G, and Y121A mutations attenuated viral proliferation. Additionally, H120A, M116A, and A122G mutations enhanced viral proliferation. Furthermore, Q104A, T106A, V111G, M116A, V117G, Y121A, and A122G mutants showed reduced viral virulence to 10-d duck embryos. Animal experiments further indicated that all mutation viruses resulted in lower genome copy numbers in the spleen compared to the WT group 5 days postinfection. Our data provide insights into the topological model of DTMUV NS4B, highlighting the essential role of NS4B TMD3 in viral replication and proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号