CF

CF
  • 文章类型: Journal Article
    慢性鼻-鼻窦炎是儿童的常见疾病。CFTR的主要功能是维持鼻粘膜表面粘膜层的厚度。CFTR致病变异体可引起CFTR蛋白功能紊乱,诱发或加重慢性感染。然而,CFTR变种在中国人群中的携带状况尚不清楚.
    研究中国儿童CRS患者CFTR的频率和变异,分析CFTR变异与CRS的临床特征和易感性。
    对来自中国大陆地区的106名CRS儿童进行全外显子组测序,分析CFTR基因。CFTR变体,频率和临床资料进行总结和分析。
    共检测到31种CFTR变体,其中7个站点的携带率明显高于人口数据库。88例患者携带2个以上的变异。37人携带变异(MAF<0.05),其中91.89%有反复上呼吸道感染史,16人患有鼻息肉,5人患有支气管扩张,1例诊断为CF相关疾病。
    中国儿童CRS中CFTR变异体的携带率增加,变异率最高(MAF<0.05)是p.I556V,p.E217G,c.1210-12[T].携带多种CFTR变体,尤其是p.E217G,p.I807M,p.V920L和c.1210-12[T]可能导致对CRS的敏感性增加。CRS患者存在CF相关疾病。
    UNASSIGNED: Chronic Rhinosinusitis is a common disease in children. The main function of CFTR is to maintain the thickness of the mucous layer on the surface of the nasal mucosa. CFTR disease-causing variant can cause CFTR protein dysfunction and induce or aggravate chronic infection. However, the carrying status of the CFTR variants in the Chinese population is not clear.
    UNASSIGNED: To study the frequency and variants of CFTR in Chinese children with CRS and to analyze the CFTR variants and the clinical characteristics and susceptibility to CRS.
    UNASSIGNED: Whole Exome Sequencing was performed to analyze the CFTR genes in a total of 106 CRS children from the Chinese mainland area. The CFTR variants, frequency and clinical data were summarized and analyzed.
    UNASSIGNED: A total of 31 CFTR variants were detected, of which the carrying rate of 7 sites was significantly higher than that of the population database. 88 patients carried more than 2 variants. 37 people carried variants (MAF < 0.05), of which 91.89% had a history of recurrent upper respiratory infections, 16 had nasal polyps, 5 had bronchiectasis, and 1 was diagnosed with CF-related disorders.
    UNASSIGNED: The carrying rate of CFTR variants in Chinese CRS children increased, and the highest rates of variants (MAF < 0.05) are p.I556V, p. E217G, c.1210-12[T]. Carrying multiple CFTR variants, especially p.E217G, p.I807 M, p.V920L and c.1210-12[T] may lead to increased susceptibility to CRS. There are CF-related disorders in patients with CRS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    滚筒是煤炭运输中使用的带式输送机的重要部件。由于煤矿环境恶劣,辊长时间处于高负荷和高摩擦状态,造成磨损失效,严重影响设备的可靠性和安全性。为了制备具有优异的轴承性能和摩擦性能的滚子材料,以聚氨酯为基体,碳纤维为增强体,采用浇注法制备了CF/PUE复合材料。由于未改性碳纤维表面活性低,与基体的粘结性能差,本文采用原位生成方法在碳纤维表面生成MoS2。发现当CF含量为0.3wt%时,MoS2/CF/PUE复合材料的力学性能更好。肖氏硬度达到92.2HA,比纯聚氨酯高10%。抗拉强度为38.44MPa,比纯聚氨酯高53%。断裂伸长率为850%,比纯聚氨酯高16%。最大压应力为2.32MPa,比纯聚氨酯高42%。摩擦系数远低于纯PUE复合材料,摩擦系数为0.284,比纯聚氨酯低59%。
    The roller is an important part of the belt conveyor used in coal transportation. Due to the harsh environment of coal mines, the rollers are in a state of high load and high friction for a long time, which causes wear failure and has a serious impact on the reliability and safety of the equipment. In order to prepare roller material with excellent bearing performance and friction performance, CF/PUE composites were prepared by pouring method with polyurethane as the matrix and carbon fiber as reinforcement. Due to the low surface activity of unmodified carbon fibers and poor bonding performance with the matrix, MoS2 was generated on the surface of carbon fiber by the in situ generation method in this paper. It was found that the mechanical properties of MoS2/CF/PUE composites were better when the CF content was 0.3 wt%. The Shore hardness reached 92.2 HA, which is 10% higher than pure polyurethane. The tensile strength was 38.44 MPa, which is 53% higher than pure polyurethane. The elongation at break was 850%, which is 16% higher than pure polyurethane. The maximum compressive stress was 2.32 MPa, which is 42% higher than pure polyurethane. The friction coefficient was much lower than that of pure PUE composites, the friction coefficient was 0.284, which is 59% lower than pure polyurethane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The heat generated by a high-power device will seriously affect the operating efficiency and service life of electronic devices, which greatly limits the development of the microelectronic industry. Carbon fiber (CF) materials with excellent thermal conductivity have been favored by scientific researchers. In this paper, CF/carbon felt (CF/C felt) was fabricated by CF and phenolic resin using the \"airflow network method\", \"needle-punching method\" and \"graphitization process method\". Then, the CF/C/Epoxy composites (CF/C/EP) were prepared by the CF/C felt and epoxy resin using the \"liquid phase impregnation method\" and \"compression molding method\". The results show that the CF/C felt has a 3D network structure, which is very conducive to improving the thermal conductivity of the CF/C/EP composite. The thermal conductivity of the CF/C/EP composite reaches 3.39 W/mK with 31.2 wt% CF/C, which is about 17 times of that of pure epoxy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Studies on carbon fiber (CF)/poly(ether ether ketone) (PEEK) fiber hybrid textiles were initiated several decades ago because their flexibility and conformability make them a promising alternative to traditional prepregs. The adhesion between the CFs and PEEK is mostly controlled by their inherent surface properties and mutual wettability. However, details of these properties remain largely unknown, especially those of PEEK. Therefore, to determine the surface and interfacial properties of these fibers, we performed a comprehensive study and characterized their surface topography (atomic force microscopy, scanning electron microscopy), surface chemistry [X-ray photoelectron spectrometry (XPS), acid-base titration], surface energies (wetting tests, acid-base approach), and interfacial mechanical properties [droplet test, interfacial shear strength (IFSS)]. These experiments were complemented by a theoretical approach to the prediction of the surface energy components (parachor) and contact angles of PEEK. We found good agreement between the results obtained by XPS and wetting tests (base-to-acid surface energy component ratio), as well as between the predicted and measured surface energy and contact angles. The results highlight the consistency and reliability of the proposed methodology. We found that both CFs and PEEK fibers appear to be smooth at the nanoscale and have large dispersive and basic surface energy components. The IFSS of CF/PEEK is significantly higher (44.87 ± 5.76 MPa) compared to that of other thermoplastic systems. The findings not only demonstrate the potential of CF/PEEK hybrid textiles but also emphasize the need to further increase the compatibility between CFs and PEEK fibers by increasing the acidic component of CF surfaces. Surface treatments and the design of a suitable sizing are potential methods to achieve this objective in future studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The use of stabilizers can prevent the reactivity loss of nanoparticles due to aggregation. In this study, carboxymethylcellulose (CMC) was selected as the stabilizer to synthesize a highly stable CMC-stabilized Fe/Ni colloid (CMC-Fe/Ni) via pre-aggregation stabilization. The reactivity of CMC-Fe/Ni was evaluated via the reaction of chloroform (CF) degradation. The effect of background solution which composition was affected by the preparation of Fe/Ni (Fe/Ni precursors, NaBH4 dosage) and the addition of solute (common ions, sulfur compounds) on the reactivity of CMC-Fe/Ni was also investigated. Additionally, the dried CMC-Fe/Ni was used for characterization in terms of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that CMC stabilization greatly improved the reactivity of Fe/Ni bimetal and CF (10 mg/L) could be completely degraded by CMC-Fe/Ni (0.1 g/L) within 45 min. The use of different Fe/Ni precursors resulting in the variations of background solution seemed to have no obvious influence on the reactivity of CMC-Fe/Ni, whereas the dosage of NaBH4 in background solution showed a negative correlation with the reactivity of CMC-Fe/Ni. Besides, the individual addition of external solutes into background solution all had an adverse effect on the reactivity of CMC-Fe/Ni, of which the poisoning effect of sulfides (Na2S, Na2S2O4) was significant than common ions and sulfite.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In this study, we adopted iso-frequency pure tone bursts to investigate the interdependent effects of sound amplitude/intensity and duration on mice inferior colliculus (IC) neuronal onset responses. On the majority of the sampled neurons (n=57, 89.1%), sound amplitude and duration had effects on the neuronal response to each other by showing complex changes of the rat-intensity function/duration selectivity types and/or best amplitudes (BAs)/durations (BDs), evaluated by spike counts. These results suggested that the balance between the excitatory and inhibitory inputs set by one acoustic parameter, amplitude or duration, affected the neuronal spike counts responses to the other. Neuronal duration selectivity types were altered easily by the low-amplitude sounds while the changes of rate-intensity function types had no obvious preferred stimulus durations. However, the first spike latencies (FSLs) of the onset response neurons were relative stable to iso-amplitude sound durations and changing systematically along with the sound levels. The superimposition of FSL and duration threshold (DT) as a function of stimulus amplitude after normalization indicated that the effects of the sound levels on FSLs are considered on DT actually.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Prenatal ethanol exposure can lead to long-lasting impairments in the ability of rats to process spatial information, as well as produce long-lasting deficits in long-term potentiation (LTP), a biological model of learning and memory processing. The present study aimed to examine the sexually dimorphic effects of chronic prenatal ethanol exposure (CPEE) on behavior cognition and synaptic plasticity balance (SPB), and tried to understand a possible mechanism by evaluating the alternation of SPB. The animal model was produced by ethanol exposure throughout gestational period with 4 g/kg bodyweight. Offspring of both male and female were selected and studied on postnatal days 36. Subsequently, the data showed that chronic ethanol exposure resulted in birth weight reduction, losing bodyweight gain, microcephaly and hippocampus weight retardation. In Morris water maze (MWM) test, escape latencies were significantly higher in CPEE-treated rats than that in control ones. They also spent much less time in the target quadrant compared to that of control animals in the probe phase. In addition, it was found that there was a more severe impairment in females than that in males after CPEE treatment. Electrophysiological studies showed that CPEE considerably inhibited hippocampal LTP and facilitated depotentiation in males, while significantly enhanced LTP and suppressed depotentiation in females. A novel index, developed by us, showed that the action of CPEE on SPB was more sensitive in females than that in males, suggesting that it might be an effective index to distinguish the difference of SPB impairment between males and females.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Ischemia reperfusion (IR) injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Silent information regulator 1 (SIRT1), a type of histone deacetylase, contributes to IRI. Curcumin (Cur) is a strong natural antioxidant and is the active component in Curcuma longa; Cur has protective effects against IRI and may regulate the activity of SIRT1. This study was designed to investigate the protective effect of Cur pretreatment on myocardial IRI and to elucidate this potential mechanism. Isolated and in vivo rat hearts and cultured neonatal rat cardiomyocytes were subjected to IR. Prior to this procedure, the hearts or cardiomyocytes were exposed to Cur in the absence or presence of the SIRT1 inhibitor sirtinol or SIRT1 siRNA. Cur conferred a cardioprotective effect, as shown by improved postischemic cardiac function, decreased myocardial infarct size, decreased myocardial apoptotic index, and several biochemical parameters, including the up-regulation of the antiapoptotic protein Bcl2 and the down-regulation of the proapoptotic protein Bax. Sirtinol and SIRT1 siRNA each blocked the Cur-mediated cardioprotection by inhibiting SIRT1 signaling. Cur also resulted in a well-preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase activity, and decreased formation of mitochondrial hydrogen peroxide and malondialdehyde. These observations indicated that the IR-induced mitochondrial oxidative damage was remarkably attenuated. However, this Cur-elevated mitochondrial function was reversed by sirtinol or SIRT1 siRNA treatment. In summary, our results demonstrate that Cur pretreatment attenuates IRI by reducing IR-induced mitochondrial oxidative damage through the activation of SIRT1 signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The redox-inert transition metal Zn is a micronutrient that plays essential roles in protein structure, catalysis, and regulation of function. Inhalational exposure to ZnO or to soluble Zn salts in occupational and environmental settings leads to adverse health effects, the severity of which appears dependent on the flux of Zn(2+) presented to the airway and alveolar cells. The cellular toxicity of exogenous Zn(2+) exposure is characterized by cellular responses that include mitochondrial dysfunction, elevated production of reactive oxygen species, and loss of signaling quiescence leading to cell death and increased expression of adaptive and inflammatory genes. Central to the molecular effects of Zn(2+) are its interactions with cysteinyl thiols, which alters their functionality by modulating their reactivity and participation in redox reactions. Ongoing studies aimed at elucidating the molecular toxicology of Zn(2+) in the lung are contributing valuable information about its role in redox biology and cellular homeostasis in normal and pathophysiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号