Ancylostoma ceylanicum

ceylanicum
  • 文章类型: Journal Article
    Ancylostomaceylanicum是一种人畜共患的土壤线虫,寄生在人类和动物(狗和猫)的肠道中,导致营养不良和缺铁性贫血。蠕虫寄生虫分泌钙网蛋白(CRT),调节或阻断宿主的免疫反应。然而,没有关于ceylanicum钙网蛋白(Ace-CRT)的数据。我们研究了重组Ace-CRT(rAce-CRT)的生物学功能。rAce-CRT显示出可靠的抗原性,并刺激小鼠脾细胞和犬外周血单个核细胞的增殖。定量逆转录PCR检测显示,rAce-CRT主要促进T辅助细胞因子2的表达,特别是IL-13,在犬外周血淋巴细胞。rAce-CRT在体外抑制补体介导的绵羊红细胞溶血。我们的发现表明Ace-CRT起着免疫调节作用,可能是钩虫疫苗的有希望的候选分子。
    Ancylostoma ceylanicum is a zoonotic soil-derived nematode that parasitizes the intestines of humans and animals (dogs and cats), leading to malnutrition and iron-deficiency anemia. Helminth parasites secrete calreticulin (CRT), which regulates or blocks the host\'s immune response. However, no data on A. ceylanicum calreticulin (Ace-CRT) are available. We investigated the biological function of recombinant Ace-CRT (rAce-CRT). rAce-CRT showed reliable antigenicity and stimulated the proliferation of mouse splenocytes and canine peripheral blood mononuclear cells. Quantitative reverse-transcription PCR assays revealed that rAce-CRT primarily promoted the expression of T helper 2 cytokines, particularly IL-13, in canine peripheral blood lymphocytes. rAce-CRT inhibited complement-mediated sheep erythrocyte hemolysis in vitro. Our findings indicate that Ace-CRT plays an immunomodulatory role and may be a promising candidate molecule for a hookworm vaccine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Ancylostomaceylanicum是一种人畜共患的土壤线虫,寄生在人和动物的肠道中,导致营养不良和缺铁性贫血。钙网蛋白是参与寄生虫感染所有阶段的多功能蛋白。研究发现寄生虫可以通过分泌钙网蛋白来调节宿主的免疫反应。探讨cycylostomacalreticumcalreticum(Ace-CRT)真核表达质粒的免疫原性。我们构建了重组Ace-CRT真核表达质粒(pEGFP-N3-Ace-CRT)。通过间接免疫荧光和蛋白质印迹分析证实了靶蛋白在人胚胎肾(HEK)293T细胞中的成功表达。用pEGFP-N3-Ace-CRT质粒免疫BALB/c小鼠。通过ELISA测量免疫小鼠血清中的IgG抗体水平表明重组质粒刺激小鼠中IgG抗体的产生。从接种疫苗的小鼠收集脾淋巴细胞以确定T细胞亚群的比例和细胞因子的表达水平。流式细胞仪检测结果显示,免疫组小鼠脾脏中CD3+CD4+和CD3+CD8+T细胞的比例明显高于对照组。重组质粒免疫增加了小鼠脾脏中IL-4,IL-10,IL-12和IL-13的表达,同时降低了IL-5,IL-6和INF-γ。这些结果表明,本研究构建的真核质粒具有良好的免疫原性,主要在宿主中诱导T辅助细胞2应答,为筛选抗钩虫疫苗候选分子奠定基础。
    Ancylostoma ceylanicum is a zoonotic soil-derived nematode that parasitizes human and animal intestines, causing malnutrition and iron-deficiency anemia. Calreticulin is a multifunctional protein involved in all stages of parasitic infection. Studies have found that parasites can secret calreticulin to regulate the host\'s immune response. To explore the immunogenicity of the eukaryotic expression plasmid of Ancylostoma ceylanicum calreticulin (Ace-CRT), we constructed a recombinant Ace-CRT eukaryotic expression plasmid (pEGFP-N3-Ace-CRT). Successful expression of the target protein in Human Embryonic Kidney (HEK) 293 T cells was confirmed by indirect immunofluorescence and Western blot analysis. BALB/c mice were immunized with pEGFP-N3-Ace-CRT plasmid. Measuring IgG antibody levels in immunized mice sera by ELISA showed that the recombinant plasmid stimulated IgG antibody production in mice. Spleen lymphocytes were collected from vaccinated mice to determine the proportion of T cell subsets and the expression levels of cytokines. Flow cytometry revealed that the percentage of CD3 + CD4+ and CD3 + CD8+ T cells in mice spleen in the immunization group was significantly higher than that in the control group. Recombinant plasmid immunization increased IL-4, IL-10, IL-12, and IL-13 expression while decreasing IL-5, IL-6, and INF-γ in mice spleens. These results indicate that the eukaryotic plasmid constructed in this study had good immunogenicity and mainly induced a T helper 2 response in the host, laying a foundation for screening candidate molecules for anti-hookworm vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    目的:犬钩虫病是一种全球性的人畜共患寄生虫病,由钩虫科的多种线虫引起,包括环形目。,Necatorspp.,和Uncinariaspp。,在狗的小肠(主要是十二指肠)。该病在我国分布广泛。本研究的目的是通过小型化雪纳瑞犬饲料感染头孢霉素的病例,系统地诊断和治疗犬钩虫病。从而为后续犬钩虫病的防治提供实验依据。
    方法:在目前的研究中,我们从一只患病的微型雪纳瑞犬中分离出钩虫卵,然后使用聚合酶链反应(PCR)从从钩虫中提取的基因组DNA中扩增ITS1-5.8S-ITS2基因序列。使用MEGA-X推断基于ITS1-5.8S-ITS2基因序列的系统发育分析。经过系统发育分析,病因学和对症疗法用于治疗犬钩虫病。
    结果:测序结果表明,ITS1-5.8S-ITS2基因序列的长度约为960bp,并提取ITS1和ITS2与其他钩虫进行相似性分析,构建系统发育树。经过系统发育分析,结果表明,患病的小型雪纳瑞犬感染了塞利兰。使用病因和对症治疗,患有头孢霉素A.ceylanicum感染的病犬也被治疗5天。
    结论:据我们所知,这是广州市首次报道犬钩虫病的诊断和治疗。此外,随着经济水平的提高,宠物狗养殖的规模也越来越大。本报告采用的诊断方法和治疗方案将有助于规范犬钩虫病的预防和控制。
    OBJECTIVE: Canine hookworm disease is a global zoonotic parasitic disease caused by a variety of nematodes in families Ancylostomatidae, including Ancylostoma spp., Necator spp., and Uncinaria spp., in the small intestine (mainly the duodenum) of dogs. The disease is widely distributed in China. The purpose of this study is to systematically diagnose and treat canine hookworm disease through the case of miniaturization Schnauzer dog feed infected with A. ceylanicum, so as to provide experimental basis for subsequent prevention and control of canine hookworm disease.
    METHODS: In the current study, we isolated hookworm eggs from a diseased miniature schnauzer, then the polymerase chain reaction (PCR) was used to amplify the ITS1-5.8S-ITS2 gene sequence from genomic DNA extracted from hookworms. Phylogenetic analysis based on ITS1-5.8S-ITS2 gene sequence sequences was inferred using MEGA-X. After phylogenetic analysis, etiologic and symptomatic therapies were used to treat the canine hookworm disease.
    RESULTS: The sequencing results showed that the length of the ITS1-5.8S-ITS2 gene sequence was approximately 960 bp, and ITS1 and ITS2 were extracted to analyze similarity with other hookworms to build a phylogenetic tree. After phylogenetic analysis, the results showed that the diseased miniature schnauzer was infected by A. ceylanicum. Using etiologic and symptomatic therapies, the sick dog with an A. ceylanicum infection was also treated for 5 days.
    CONCLUSIONS: To our knowledge, this is the first report of diagnosis and treatment for canine hookworm disease in Guangzhou city. In addition, with the improvement of economic level, the scale of pet dog breeding is also increasing. The diagnostic methods and treatment schemes adopted in this report will help to standardize the prevention and control of canine hookworm disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Ancylostoma ceylanicum is a common zoonotic nematode that inhabits the small intestine of humans, dogs, and cats. Saposin-like proteins (SLPs) have hemolytic and antibacterial activities and could be used as diagnostic or vaccine candidates. To explore the biological functions of Ancylostoma ceylanicum SLP (Ace-SLP-1), cDNA-encoding Ace-SLP-1 mature peptide was cloned into prokaryotic expression vector pET-28a and transformed into Escherichia coli BL21 (DE3) to induce expression. After incubation of canine red blood cell suspension with different concentrations of recombinant Ace-SLP-1, the supernatant was separated to measure OD value and calculate the hemolysis rate. The different concentrations of recombinant protein were co-cultured with E. coli and Enterococcus faecalis, and colony-forming units (CFU) were determined by the plate counting method. Peripheral blood mononuclear cells (PBMCs) from healthy dogs were incubated with different concentrations of recombinant Ace-SLP-1, and the cytokine expression was evaluated by relative quantitative PCR. Our results showed that the hemolytic activity of Ace-SLP-1 increased with the increase in protein concentration from 25 to 100 μg/mL. The recombinant protein had no antibacterial activity against the two kinds of bacteria but could stimulate the secretion of cytokines (IL-4, IL-10, IL-12, and IL-13) in canine PBMCs. These data suggest that Ace-SLP-1 is involved in hookworm blood-feeding and survival and has good immunogenicity, supporting its potential as a diagnostic and vaccine target molecule.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Aspartyl protease inhibitors (APIs) from parasitic intestinal nematodes are highly immunogenic and have been suggested as potential vaccine antigens. Ac-API-1 from Ancylostoma caninum showed strong immunogenicity and its polyclonal antibodies could specifically recognize the excretory/secretory products of adult worms. However, little is known about molecular characteristics and biological function of API from Ancylostoma ceylanicum (Ace-API). In this study, the Ace-API mature peptide coding sequence was cloned and expressed, and molecular characteristics of its full length sequence were analyzed. Ace-API cDNA was 684 bp in length, which encoded 228 amino acids. The similarity of the Ace-API amino acid sequence to Ac-API-1 and Adu-API-1 was 96.93% and 96.49%, respectively, and they clustered together in the phylogenetic tree. Escheria coli-expressed recombinant protein was mainly soluble in the supernatant of bacterial cell lysate. Western blot showed that Ace-API protein had good reactivity to the serum of infected dogs. Pepsin inhibition assay revealed that the recombinant protein had inhibitory activity on pepsin. Immunofluorescence results demonstrated that Ace-API was mainly localized to the epidermis, excretory glands, and pseudocoelomic fluid of the adult. Using the quantitative real-time PCR, the expression of Ace-api mRNA in adults was significantly higher than that in the third stage (L3) larvae. Together, these data indicate that Ace-API is secreted extracellularly by the parasite, and might play a role in protecting the parasite against the proteolytic digestion by the host proteases, which stimulate further studies to explore this protein as a potential hookworm vaccine candidate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Ancylostoma ceylanicum is a zoonotic parasitic nematode that can cause iron-deficiency anemia and malnutrition in humans. A. ceylanicum hookworm platelet inhibitor (Ace-HPI) can inhibit platelet aggregation in the host to facilitate blood sucking, but whether it possesses platelet adhesion inhibitory activity or immunomodulatory role is yet unknown. To explore the effect of Ace-HPI on platelet adhesion, we expressed the recombinant protein in two competent cells, BL21 (DE3) and Rosetta-gami2 (DE3), and incubated this protein with canine platelets in a 96-well microplate. Ace-HPI was used to stimulate peripheral blood mononuclear cells (PBMC) in vitro to investigate the effect on PBMC proliferation and cytokine expression. Results showed that Ace-HPI expressed in Rosetta-gami2 (DE3) strain was mostly soluble. The inhibitory effect of this protein on platelet adhesion was relatively weak (7-8%). This protein stimulated the proliferation of PBMC and promoted the expression of Treg and Th2 cytokines, such as IL-10 and IL-13. These results lay a foundation for exploring the role of Ace-HPI in hookworm disease pathogenesis and as a candidate molecule for hookworm vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Glutathione S-transferases (GSTs) are a detoxifying enzyme family that is essential for parasite blood-feeding and survival, and represent potential targets for hookworm vaccine development. Multiple GST-encoding complementary DNAs (cDNAs) have been cloned from Ancylostoma caninum and Necator americanus, but there are no reports about the cloning of this enzyme from Ancylostoma ceylanicum, the animal-derived zoonotic hookworm. To study the molecular nature and tissue localization of GST of A. ceylanicum (Ace-GST), we designed primers based on the GST gene sequence of A. ceylanicum in GenBank, amplified the Ace-GST cDNA by reverse transcription polymerase chain reaction, and analysed its homology and genetic evolution relationship. The amplified product was cloned into the pET-32a vector and transformed into Escherichia coli BL21 (DE3) for expression. To prepare anti-GST polyclonal antibodies, the recombinant protein was purified and used to immunize Kunming mice. The level of immunoglobulin G (IgG) antibody in the serum of immunized mice was detected by indirect enzyme-linked immunosorbent assay, and the Ace-GST localization in adult worm was determined using the immunofluorescence method. The results showed that the full-length cDNA encoding Ace-GST was 468 bp, which had the highest homology with Ac-GST-1 (60.1%) and clustered into one branch (v-class) with Ac-GST-1 and Na-GST-1 in a phylogenetic tree. Mice immunized with recombinant Ace-GST showed specific IgG antibody response. Immunolocalization revealed that natural Ace-GST is mainly located in the epidermis, muscle and intestine of the adult. These results may lay a foundation for further studies on the biological function of Ace-GST.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Ancylostoma ceylanicum is a zoonotic hookworm, which mainly causes iron deficiency anemia (IDA) in humans and animals. Hookworm platelet inhibitor (HPI) has been isolated from adult Ancylostoma caninum and linked to the pathogenesis of hookworm associated intestinal hemorrhage and IDA. However, there is no available data about HPI from A. ceylanicum. To study the molecular characteristics of A. ceylanicum HPI (Ace-HPI), its corresponding cDNA was amplified from adult A. ceylanicum mRNA using the primers designed based on the Ac-HPI gene sequence, and its sequence homology and phylogenetic relationship were analyzed. The differential expression of Ace-hpi mRNA in the adult and third larval (L3) stages was compared using the quantitative real-time PCR. Ace-HPI reactivity and tissue localization were studied by Western blot and immunofluorescence, respectively. Platelet aggregation activity was monitored in a 96-well microplate reader. The results showed that the Ace-HPI encoding gene was 603 bp in length. Ace-HPI showed 91% homology to Ac-HPI, was closely related to Ac-ASP3, and belonged to the CAP superfamily. Ace-hpi transcripts were most abundant in the adult stage, followed by serum-stimulated infective larvae (ssL3), and finally in L3 stage, with a significant difference. Escherichia coli-expressed recombinant protein had good reactivity with the positive serum of A. ceylanicum-infected dogs. Immunolocalization indicated that Ace-HPI was located in the esophagus and cephalic glands of the adult. As well as, recombinant Ace-HPI inhibited the platelet aggregation in-vitro. HPI overexpression, anatomical location in adults, antigenicity and its in-vitro activity indicate its possible role in adult worm blood-feeding and as a valuable target for hookworm vaccine and drug development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Ancylostoma ceylanicum may inhabit the small intestine of canids, felids and humans, can pose a potential risk to public health. This study is the first time to amplify complete mitochondrial genome sequence of A. ceylanicum from dog and to compare it with Ancylostoma tubaeforme, Ancylostoma duodenale and Ancylostoma caninum. The results showed that the complete mitochondrial genome of A. ceylanicum was 13,660 bp in length, including 12 protein-coding genes, 2 rRNA genes and 22 tRNA genes and 3 non-coding regions (AT-rich region, SNCR and LNCR). Its mtDNA was the shortest, biased toward A and T at base composition, and higher than other three Ancylostoma species at total AT content. Its nad5 and nad6 genes used TTG and ATT as initiation codons, while other three Ancylostoma species used ATT and GTG or ATG. The 22 tRNA genes were different in length among four Ancylostoma species, but their anticodons were the same. Among 12 protein-coding genes, the cox1 gene was the lowest at AT content and minimum at Ka/Ks while the nad2 gene was the opposite. The phylogenetic tree showed that in the lineage of Ancylostoma, A. ceylanicum occurred on a branch external to other three Ancylostoma species, and A. caninum and A. tubaeforme had closer phylogenetic relationship than A. duodenale. This study not only enhances the mitochondrial genome database of Ancylostomatidae nematodes, but also provides new data for further phylogenetic studies among Ancylostomatidae nematodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号