metalloproteins

金属蛋白
  • 文章类型: Journal Article
    产生胰岛素的β细胞的再生是治疗糖尿病的另一种途径,在缺乏β细胞的生理反应过程中,在体内解开这一过程至关重要。这里,我们的目的是描述肝细胞如何促进β细胞再生,直接或间接通过分泌的蛋白质或代谢物,在斑马鱼β细胞损失模型中。使用谱系追踪,我们表明,即使在极端的β细胞消融条件下,肝细胞也不会直接转化为β细胞。β细胞消融后分离的肝细胞的转录组学分析显示脂质和葡萄糖相关过程的改变。根据转录组学,我们进行了基因筛选,揭示了钼辅因子(Moco)生物合成途径在斑马鱼β细胞再生和葡萄糖代谢中的潜在作用。始终如一,小鼠的钼辅因子合成2(Mocs2)单倍体不足表明葡萄糖代谢和肝功能失调。一起,我们的研究揭示了肝脏-胰腺的串扰,并表明钼辅因子生物合成途径与葡萄糖代谢和糖尿病的关系应进一步研究。
    Regeneration of insulin-producing β-cells is an alternative avenue to manage diabetes, and it is crucial to unravel this process in vivo during physiological responses to the lack of β-cells. Here, we aimed to characterize how hepatocytes can contribute to β-cell regeneration, either directly or indirectly via secreted proteins or metabolites, in a zebrafish model of β-cell loss. Using lineage tracing, we show that hepatocytes do not directly convert into β-cells even under extreme β-cell ablation conditions. A transcriptomic analysis of isolated hepatocytes after β-cell ablation displayed altered lipid- and glucose-related processes. Based on the transcriptomics, we performed a genetic screen that uncovers a potential role of the molybdenum cofactor (Moco) biosynthetic pathway in β-cell regeneration and glucose metabolism in zebrafish. Consistently, molybdenum cofactor synthesis 2 (Mocs2) haploinsufficiency in mice indicated dysregulated glucose metabolism and liver function. Together, our study sheds light on the liver-pancreas crosstalk and suggests that the molybdenum cofactor biosynthesis pathway should be further studied in relation to glucose metabolism and diabetes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    极化和电荷转移相互作用在含有金属的配体-受体复合物中起重要作用,只有量子力学方法才能充分描述它们对结合能的贡献。在这项工作中,我们选择了一组人类碳酸酐酶II(hCAII)的苯磺酰胺配体-一种重要的药物靶标,在活性位点包含Zn2离子-作为案例研究,以预测金属蛋白-配体复合物中的结合自由能,并设计了结合从头算片段分子轨道(FMO)方法和GRID方法的专门计算方法。为了重现这些系统中的实验结合自由能,我们采用了机器学习的方法,这里命名为公式生成器(FG),考虑到不同的FMO能源术语,疏水相互作用能(由GRID计算)和logP。FG方法的主要优点是它可以找到用于预测结合自由能的能量项之间的非线性关系,明确显示他们的数学关系。这项工作表明了FG方法的有效性,因此,它可能是开发新评分函数的重要工具。的确,我们的评分函数显示与实验结合自由能高度相关(R2=0.76-0.95,RMSE=0.34-0.18),揭示了能量项之间的非线性关系,并强调了疏水接触所起的相关作用。这些结果,随着配体-受体相互作用的FMO表征,代表支持设计新的和有效的hCAII抑制剂的重要信息。
    Polarization and charge-transfer interactions play an important role in ligand-receptor complexes containing metals, and only quantum mechanics methods can adequately describe their contribution to the binding energy. In this work, we selected a set of benzenesulfonamide ligands of human Carbonic Anhydrase II (hCA II)-an important druggable target containing a Zn2+ ion in the active site-as a case study to predict the binding free energy in metalloprotein-ligand complexes and designed specialized computational methods that combine the ab initio fragment molecular orbital (FMO) method and GRID approach. To reproduce the experimental binding free energy in these systems, we adopted a machine-learning approach, here named formula generator (FG), considering different FMO energy terms, the hydrophobic interaction energy (computed by GRID) and logP. The main advantage of the FG approach is that it can find nonlinear relations between the energy terms used to predict the binding free energy, explicitly showing their mathematical relation. This work showed the effectiveness of the FG approach, and therefore, it might represent an important tool for the development of new scoring functions. Indeed, our scoring function showed a high correlation with the experimental binding free energy (R2 = 0.76-0.95, RMSE = 0.34-0.18), revealing a nonlinear relation between energy terms and highlighting the relevant role played by hydrophobic contacts. These results, along with the FMO characterization of ligand-receptor interactions, represent important information to support the design of new and potent hCA II inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    2011年在甲基营养型甲基杆菌中发现了第一种稀土依赖性酶,这促使人们进行了深入的研究,以了解这些系统中的独特化学。这种酶,乙醇脱氢酶(ADH),具有与氧化还原活性辅酶吡咯并喹啉醌(PQQ)密切相关的La3离子,并且在结构上与来自同一生物体的Ca2依赖性ADH同源。AM1还产生周质PQQ结合蛋白,PqqT,我们现在通过X射线衍射在结构上表征为1.46-µ分辨率。该晶体结构揭示了在ADH中被路易斯酸性阳离子类似地占据的位点处与PQQ氢键合的Lys残基。因此,我们制备了K142A-和K142D-PqqT变体以评估该位点与金属结合的相关性。等温滴定量热法实验和通过UV-Vis吸收和发射光谱监测的滴定支持K142D-PqqT在结合的PQQ存在下与La3紧密结合(Kd=0.6±0.2μM),并产生与ADH酶一致的光谱特征。对于WT-或K142A-变体或在将Ca2+添加至PQQK142D-PqqT时没有观察到这些光谱特征。苯甲醇加入La3+结合的PQQK142D-PqqT(但不加入Ca2+结合的PQQK142D-PqqT,或La3结合的PQQWT-PqqT)产生与PQQ还原相关的光谱变化,化学捕集实验揭示了苯甲醛的产生,支持ADH活性。通过创建一个模拟天然ADH酶的金属结合位点,我们提出了一种稀土依赖的人工金属酶,为未来的机制,生物催化,和生物传感应用。
    The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 μM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属依赖性酶是自然界中丰富且重要的催化剂。金属酶的功能多功能性使它们成为通过蛋白质工程以及从头设计的序列模拟进行改进的共同目标。在这两种策略中,非规范辅因子和/或非规范侧链的掺入已被证明是有用的工具。对多肽骨架本身的非规范共价修饰的利用较少探索但同样有效。这种努力可能需要在天然链中引入有限的人工单体以产生异质主链或构建采用限定折叠的完全非生物低聚物。在这里,我们回顾了最近在金属酶模拟物的构建中应用人工蛋白质样骨架的研究,突出这一新兴领域的进展以及悬而未决的问题。
    Metal-dependent enzymes are abundant and vital catalytic agents in nature. The functional versatility of metalloenzymes has made them common targets for improvement by protein engineering as well as mimicry by de novo designed sequences. In both strategies, the incorporation of non-canonical cofactors and/or non-canonical side chains has proved a useful tool. Less explored-but similarly powerful-is the utilization of non-canonical covalent modifications to the polypeptide backbone itself. Such efforts can entail either introduction of limited artificial monomers in natural chains to produce heterogeneous backbones or construction of completely abiotic oligomers that adopt defined folds. Herein, we review recent research applying artificial protein-like backbones in the construction of metalloenzyme mimics, highlighting progress as well as open questions in this emerging field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    将催化活性过渡金属嵌入蛋白质支架中提供了人工金属酶(ArM)。这种混合催化剂显示出让人联想到均相催化剂和酶催化剂的特征。在1970年代末由Whitesides和Kaiser开创的,在过去的二十年里,这个领域已经扩大了,以反应类型不断增加的多样性为标志,辅因子,和蛋白质支架。最近值得注意的发展包括i)使用地球丰富的金属辅因子,ii)并发级联反应,iii)协同催化,和iv)体内催化。由于计算蛋白质设计的重大进展,基于从头设计的蛋白质和定制的嵌合蛋白质的ArM为这个令人兴奋的领域带来了光明的未来。
    Embedding a catalytically competent transition metal into a protein scaffold affords an artificial metalloenzyme (ArM). Such hybrid catalysts display features that are reminiscent of both homogeneous and enzymatic catalysts. Pioneered by Whitesides and Kaiser in the late 1970s, this field of ArMs has expanded over the past two decades, marked by ever-increasing diversity in reaction types, cofactors, and protein scaffolds. Recent noteworthy developments include i) the use of earth-abundant metal cofactors, ii) concurrent cascade reactions, iii) synergistic catalysis, and iv) in vivo catalysis. Thanks to significant progress in computational protein design, ArMs based on de novo-designed proteins and tailored chimeric proteins promise a bright future for this exciting field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属蛋白活性位点中的氢键(H键)相互作用可以关键地调节酶功能。与底物相互作用引发的蛋白质结构变化,产品,和伴侣蛋白通常通过连接到活性位点的H键网络的特定变化被翻译成金属因子。然而,金属蛋白结构和机制的复杂性往往阻碍了我们定义精确的分子相互作用的能力,从而导致这些复杂的调节途径。为了解决这个缺点,我们已经开发了构象可切换的人工金属蛋白(swArMs),其中变构Gln结合触发蛋白质构象变化,影响所安装的金属因子周围的微环境.在这里,我们报告了一个组合的结构,光谱学,和计算方法,以增强swArM金属因子位点周围H键相互作用的构象依赖性变化。采用结构知情的分子动力学模拟来预测点突变,这些点突变可以优先增强swArM的Gln结合的全构象中的活性位点H键相互作用。通过与金属因子位点相关的独特红外光谱信号测试我们的预测,我们已经确定了三个关键残基能够赋予对金属因子微环境的构象控制。所得swArM不仅模拟了生物学相关的结构调节,而且提供了增强的Gln响应性生物探针,以在未来的生物传感应用中加以利用。
    Hydrogen-bonding (H-bonding) interactions in metalloprotein active sites can critically regulate enzyme function. Changes in the protein structure triggered by interplay with substrates, products, and partner proteins are often translated to the metallocofactor by way of specific changes in H-bond networks connected to the active site. However, the complexities of metalloprotein architecture and mechanism often preclude our ability to define the precise molecular interactions giving rise to these intricate regulatory pathways. To address this shortcoming, we have developed conformationally switchable artificial metalloproteins (swArMs) in which allosteric Gln-binding triggers protein conformational changes that impact the microenvironment surrounding an installed metallocofactor. Herein, we report a combined structural, spectroscopic, and computational approach to enhance the conformation-dependent changes in H-bond interactions surrounding the metallocofactor site of a swArM. Structure-informed molecular dynamics simulations were employed to predict point mutations that could enhance active site H-bond interactions preferentially in the Gln-bound holo-conformation of the swArM. Testing our predictions via the unique infrared spectral signals associated with the metallocofactor site, we have identified three key residues capable of imparting conformational control over the metallocofactor microenvironment. The resultant swArMs not only model biologically relevant structural regulation but also provide an enhanced Gln-responsive biological probe to be leveraged in future biosensing applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大气中二氧化碳含量的不断增加导致了全球变暖。将二氧化碳转化为其他碳化合物可以减轻其大气水平并生产有价值的产品,作为CO2也可以作为丰富和廉价的碳原料。然而,CO2的惰性性质对其减少提出了重大挑战。为了迎接挑战,自然界利用Fe等过渡金属离子进化出金属酶,Ni,Mo,W,以及电子转移伙伴的功能。模仿这些酶,人工金属酶(ArM)已经设计使用替代蛋白质支架和各种金属因子,如Ni,Co,Re,Rh,和FeS簇。在过去的十年中,这些ArM的催化效率和CO2还原产物的范围都得到了改善。这篇综述首先集中于通过讨论它们的结构和活性位点直接减少CO2的天然金属酶,以及所提出的反应机理。然后介绍了电化学的常用策略,光化学,或光电化学利用这些天然酶来减少CO2,并突出了过去五年的最新进展。我们还总结了生物启发Arm的蛋白质设计原理,将它们与天然酶系统进行比较,并概述了酶促CO2还原的挑战和机遇。
    The continuously increasing level of atmospheric CO2 in the atmosphere has led to global warming. Converting CO2 into other carbon compounds could mitigate its atmospheric levels and produce valuable products, as CO2 also serves as a plentiful and inexpensive carbon feedstock. However, the inert nature of CO2 poses a major challenge for its reduction. To meet the challenge, nature has evolved metalloenzymes using transition metal ions like Fe, Ni, Mo, and W, as well as electron-transfer partners for their functions. Mimicking these enzymes, artificial metalloenzymes (ArMs) have been designed using alternative protein scaffolds and various metallocofactors like Ni, Co, Re, Rh, and FeS clusters. Both the catalytic efficiency and the scope of CO2-reduction product of these ArMs have been improved over the past decade. This review first focuses on the natural metalloenzymes that directly reduce CO2 by discussing their structures and active sites, as well as the proposed reaction mechanisms. It then introduces the common strategies for electrochemical, photochemical, or photoelectrochemical utilization of these native enzymes for CO2 reduction and highlights the most recent advancements from the past five years. We also summarize principles of protein design for bio-inspired ArMs, comparing them with native enzymatic systems and outlining challenges and opportunities in enzymatic CO2 reduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在光合真核生物的质体中表达的约50种蛋白质连接铁硫(FeS)簇,并确保光合作用的重要功能。硫和氮同化,而且在颜料的合成中,维生素和激素。这些FeS团簇的合成,它们共同或翻译后整合到这些蛋白质中,依赖于属于所谓的硫动员(SUF)机制的几种蛋白质。FeS簇首先在支架蛋白复合物上从头合成,然后其他后期作用的成熟因子在特定转移中起作用,该簇可能转化和插入靶受体蛋白。在这次审查中,我们将总结已知的负责合成和转移步骤的分子机制,特别关注允许形成所需蛋白质复合物的结构方面。
    About 50 proteins expressed in plastids of photosynthetic eukaryotes ligate iron‑sulfur (Fe-S) clusters and ensure vital functions in photosynthesis, sulfur and nitrogen assimilation, but also in the synthesis of pigments, vitamins and hormones. The synthesis of these Fe-S clusters, which are co- or post-translationally incorporated into these proteins, relies on several proteins belonging to the so-called sulfur mobilization (SUF) machinery. An Fe-S cluster is first de novo synthesized on a scaffold protein complex before additional late-acting maturation factors act in the specific transfer, possible conversion and insertion of this cluster into target recipient proteins. In this review, we will summarize what is known about the molecular mechanisms responsible for both the synthesis and transfer steps, focusing in particular on the structural aspects that allow the formation of the required protein complexes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    弱磁场(WMF)已被认为可以促进生物脱氮过程;然而,潜在的机制在很大程度上仍未被探索,阻碍了其有效性的优化。这里,我们系统地研究了WMF对反硝化性能的影响,酶活性,微生物群落,在不同WMF强度和C:N比的情况下,填充床生物反应器处理高硝酸盐废水中的蛋白质组。结果表明,随着C:N比的降低,WMF通过持续刺激反硝化还原酶和NAD/NADH生物合成的活性,显着促进了反硝化。由于含铁磁性离子(FIC)金属蛋白的显着富集过表达,反硝化中涉及的还原酶和电子转移酶被过量产生。我们还观察到WMF对微生物群落结构的强度依赖性选择压力,尽管与C:N比变化引起的影响相比是有限的。通过结合以基因组为中心的元蛋白质组学和结构预测,我们发现了显性反硝化作用,Halomonas,在WMF下被假单胞菌和亚足动物击败,可能是由于其在铁吸收方面的结构缺陷,这表明有利的铁磁离子获取能力对于满足FIC金属蛋白过量生产的底物需求是必要的。这项研究提高了我们对复杂群落背景下生物磁效应的理解,并强调了WMF操纵FIC蛋白相关代谢和微调群落结构的潜力。
    Weak magnetic field (WMF) has been recognized to promote biological denitrification processes; however, the underlying mechanisms remain largely unexplored, hindering the optimization of its effectiveness. Here, we systematically investigated the effects of WMF on denitrification performance, enzyme activity, microbial community, and metaproteome in packed bed bioreactors treating high nitrate wastewater under different WMF intensities and C:N ratios. Results showed that WMFs significantly promoted denitrification by consistently stimulating the activities of denitrifying reductases and NAD+/NADH biosynthesis across decreasing C:N ratios. Reductases and electron transfer enzymes involved in denitrification were overproduced due to the significantly enriched overexpression of ferromagnetic ion-containing (FIC) metalloproteins. We also observed WMFs\' intensity-dependent selective pressure on microbial community structures despite the effects being limited compared to those caused by changing C:N ratios. By coupling genome-centric metaproteomics and structure prediction, we found the dominant denitrifier, Halomonas, was outcompeted by Pseudomonas and Azoarcus under WMFs, likely due to its structural deficiencies in iron uptake, suggesting that advantageous ferromagnetic ion acquisition capacity was necessary to satisfy the substrate demand for FIC metalloprotein overproduction. This study advances our understanding of the biomagnetic effects in the context of complex communities and highlights WMF\'s potential for manipulating FIC protein-associated metabolism and fine-tuning community structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甲烷菌通常存在于硫化物环境中,有利于铁(Fe)等过渡金属作为金属硫化物的沉淀,包括麦肯纳维(FeS)和黄铁矿(FeS2)。这些金属硫化物历来被认为是生物不可用的。尽管如此,产甲烷菌通常以硫化物(HS-)作为硫源培养,一个条件,预计将有利于金属沉淀,从而限制金属的可用性。最近的研究表明,产甲烷菌可以从FeS和FeS2中获取Fe和硫(S)以维持生长。因此,与提供有HS-的培养基相比,提供有FeS2的培养基应导致过渡金属的更高的可用性。这里,我们研究了过渡金属在硫化物下的可用性(即,提供有HS-作为唯一S源的细胞)与非硫化物(提供有FeS2作为唯一S源的细胞)条件会影响MethanosarcinabarkeriFusaro的金属蛋白质组。为了实现这一点,我们采用了尺寸排阻色谱,电感耦合等离子体质谱和鸟枪蛋白质组学。观察到铁的组成和丰度发生了显着变化,钴,镍,锌,和钼蛋白。差异中涉及甲烷生成和电子传递链的多亚基蛋白质复合物的化学计量和丰度的变化。我们的数据表明,在FeS2上生长时,M.barkeri利用了最小的铁硫簇复合物和典型的半胱氨酸生物合成蛋白,但使用了典型的Suf途径与tRNA-Sep半胱氨酸途径一起进行铁硫簇和半胱氨酸的生物合成在硫化物生长条件下。催化生化反应的蛋白质通常需要对硫具有高亲和力的过渡金属,生活的另一个必要元素。因此,金属和硫的可用性是交织在一起的,可能会对生物体的生物化学产生重大影响。产甲烷菌通常处于缺氧状态,富含硫化物(euxinic)的环境,有利于过渡金属沉淀为金属硫化物,从而产生假定的金属限制。最近,几种产甲烷菌已被证明可以从黄铁矿中获得铁和硫,一种丰富的硫化铁矿物,传统上被认为是生物学不可用的。这里介绍的工作为金属蛋白的分布提供了新的见解,和金属的吸收下生长的甲烷或黄铁矿生长条件。这种产甲烷菌在不同金属和硫条件下的彻底表征增加了我们对金属可用性对产甲烷菌的影响的理解。大概还有其他厌氧菌,居住在低氧环境中。
    Methanogens often inhabit sulfidic environments that favor the precipitation of transition metals such as iron (Fe) as metal sulfides, including mackinawite (FeS) and pyrite (FeS2). These metal sulfides have historically been considered biologically unavailable. Nonetheless, methanogens are commonly cultivated with sulfide (HS-) as a sulfur source, a condition that would be expected to favor metal precipitation and thus limit metal availability. Recent studies have shown that methanogens can access Fe and sulfur (S) from FeS and FeS2 to sustain growth. As such, medium supplied with FeS2 should lead to higher availability of transition metals when compared to medium supplied with HS-. Here, we examined how transition metal availability under sulfidic (i.e., cells provided with HS- as sole S source) versus non-sulfidic (cells provided with FeS2 as sole S source) conditions impact the metalloproteome of Methanosarcina barkeri Fusaro. To achieve this, we employed size exclusion chromatography coupled with inductively coupled plasma mass spectrometry and shotgun proteomics. Significant changes were observed in the composition and abundance of iron, cobalt, nickel, zinc, and molybdenum proteins. Among the differences were alterations in the stoichiometry and abundance of multisubunit protein complexes involved in methanogenesis and electron transport chains. Our data suggest that M. barkeri utilizes the minimal iron-sulfur cluster complex and canonical cysteine biosynthesis proteins when grown on FeS2 but uses the canonical Suf pathway in conjunction with the tRNA-Sep cysteine pathway for iron-sulfur cluster and cysteine biosynthesis under sulfidic growth conditions.IMPORTANCEProteins that catalyze biochemical reactions often require transition metals that can have a high affinity for sulfur, another required element for life. Thus, the availability of metals and sulfur are intertwined and can have large impacts on an organismismal biochemistry. Methanogens often occupy anoxic, sulfide-rich (euxinic) environments that favor the precipitation of transition metals as metal sulfides, thereby creating presumed metal limitation. Recently, several methanogens have been shown to acquire iron and sulfur from pyrite, an abundant iron-sulfide mineral that was traditionally considered to be unavailable to biology. The work presented here provides new insights into the distribution of metalloproteins, and metal uptake of Methanosarcina barkeri Fusaro grown under euxinic or pyritic growth conditions. Thorough characterizations of this methanogen under different metal and sulfur conditions increase our understanding of the influence of metal availability on methanogens, and presumably other anaerobes, that inhabit euxinic environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号