layered double hydroxides

层状双氢氧化物
  • 文章类型: Journal Article
    高度免疫抑制的肿瘤微环境(TME)限制了免疫应答的有效激活。为了恢复对免疫系统的监视以进行强大的激活,致力于使TME正常化的巨大努力。这里,开发了一种锰掺杂的层状双氢氧化物(Mn-LDH),用于通过逆转TME进行有效的抗肿瘤免疫。通过一步水热法合成Mn-LDH。除了LDH固有的质子中和能力外,锰氧化物的引入赋予LDH额外的产生氧的能力。Mn-LDH在暴露于具有高水平H+和H2O2的TME时有效释放Mn2+和Mg2+,分别激活干扰素基因途径的合酶刺激因子并维持CD8+T细胞的细胞毒性。在先天和适应性免疫中实现级联样作用。局部施用的Mn-LDH促进了由成熟树突状细胞组成的“热”网络,M1表型巨噬细胞,以及细胞毒性和辅助性T细胞,显着抑制原发性和远端肿瘤的生长。此外,Mn-LDH的光热转化能力在单次给药和照射的大型肿瘤模型中激发了更强大的治疗效果。总的来说,本研究指导合理设计TME调节免疫疗法以实现稳健的免疫激活,为下一代癌症免疫治疗提供临床候选药物。
    The highly immunosuppressive tumor microenvironment (TME) restricts the efficient activation of immune responses. To restore the surveillance of the immune system for robust activation, vast efforts are devoted to normalizing the TME. Here, a manganese-doped layered double hydroxide (Mn-LDH) is developed for potent anti-tumor immunity by reversing TME. Mn-LDH is synthesized via a one-step hydrothermal method. In addition to the inherent proton neutralization capacity of LDH, the introduction of manganese oxide endows LDH with an additional ability to produce oxygen. Mn-LDH effectively releases Mn2+ and Mg2+ upon exposure to TME with high levels of H+ and H2O2, which activates synthase-stimulator of interferon genes pathway and maintains the cytotoxicity of CD8+ T cells respectively, achieving a cascade-like role in innate and adaptive immunity. The locally administered Mn-LDH facilitated a \"hot\" network consisting of mature dendritic cells, M1-phenotype macrophages, as well as cytotoxic and helper T cells, significantly inhibiting the growth of primary and distal tumors. Moreover, the photothermal conversion capacity of Mn-LDH sparks more robust therapeutic effects in large established tumor models with a single administration and irradiation. Overall, this study guides the rational design of TME-modulating immunotherapeutics for robust immune activation, providing a clinical candidate for next-generation cancer immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目前的工作描述了一个快速,简单,基于层状双氢氧化物(LDH)耦合分散固相微萃取(DSPME)去除水样中α-萘酚(α-NAP)和β-萘酚(β-NAP)异构体的高效方法。三种不同的LDH(MgAl-LDH,NiAl-LDH,和CoAl-LDH)用于研究层间阴离子和摩尔比如何影响去除性能。DSPME程序中的关键因素(pH,LDH量,接触时间)在最佳条件下通过单变量方法进行优化:pH,4-8;LDH量,5毫克;和接触时间,2.5min.该方法可成功应用于实际样水,即使在超痕量浓度下也能去除NAP异构体。大体积样品堆叠(LVSS-CE)技术为α-萘酚和β-萘酚提供了5.52µg/L和6.36µg/L的检测极限(LOD),分别。该方法的精度是根据日内和日间可重复性进行评估的,在所有情况下%RSD小于10%。在苯酚和双酚A存在下测试了MgAl/Cl--LDH的选择性,去除率>92.80%。洗脱测试表明,LDHMgAl/Cl--LDH可适用于未来的α-萘酚和β-萘酚的预浓缩。
    The present work describes a quick, simple, and efficient method based on the use of layered double hydroxides (LDH) coupled to dispersive solid phase micro-extraction (DSPME) to remove α-naphthol (α-NAP) and β-naphthol (β-NAP) isomers from water samples. Three different LDHs (MgAl-LDH, NiAl-LDH, and CoAl-LDH) were used to study how the interlayer anion and molar ratio affected the removal performance. The critical factors in the DSPME procedure (pH, LDH amount, contact time) were optimized by the univariate method under the optimal conditions: pH, 4-8; LDH amount, 5 mg; and contact time, 2.5 min. The method can be successfully applied in real sample waters, removing NAP isomers even in ultra-trace concentrations. The large volume sample stacking (LVSS-CE) technique provides limits of detections (LODs) of 5.52 µg/L and 6.36 µg/L for α-naphthol and β-naphthol, respectively. The methodology\'s precision was evaluated on intra- and inter-day repeatability, with %RSD less than 10% in all cases. The MgAl/Cl--LDH selectivity was tested in the presence of phenol and bisphenol A, with a removal rate of >92.80%. The elution tests suggest that the LDH MgAl/Cl--LDH could be suitable for pre-concentration of α-naphthol and β-naphthol in future works.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于能量存储和转换的纳米材料的发展一直很重要。层状双氢氧化物(LDH)是一种很有前途的材料,成分可调,易于合成。在这项工作中,NiCo-LDH的形态与表面活性剂,包括十二烷基硫酸钠(SDS)和十六烷基三甲基溴化铵(CTAB),研究了形貌与电化学性能的相关性。具有层状结构的NiCo-LDH-SDS在1Ag-1时的比电容为1004Cg-1,高于针状NiCo-LDH-CTAB(678Cg-1)和杆状NiCo-LDH(279Cg-1)。同时,NiCo-LDH-SDS和NiCo-LDH-CTAB显示36和19mV的降低,分别,与NiCo-LDH相比,它们在10mAcm-2时的过电位。接触角和粘合力测量证明了形态对界面性能的影响,层状结构有利于气泡的及时分离。因此,LDH的合理形态调控可以有效改变气液固界面,从而加速反应动力学。形态之间的联系,在这项工作中,气泡释放和电化学性能得到了很好的确立,可用于研究纳米材料与能源相关的活动,尤其是关于气泡释放过程的。
    The development of nanomaterials for energy storage and conversion has always been important. Layered double hydroxide (LDH) is a promising material due to its high capacity, tunable composition and easy synthesis. In this work, the morphology of NiCo-LDH is tuned with surfactants including sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), and investigated the correlation between morphology and electrochemical properties. NiCo-LDH-SDS with a layered structure exhibited a specific capacitance of 1004 C g-1 at 1 A g-1, which is higher than that of the needle-like NiCo-LDH-CTAB (678 C g-1) and the rod-like NiCo-LDH (279 C g-1). Meanwhile, NiCo-LDH-SDS and NiCo-LDH-CTAB showed a reduction of 36 and 19 mV, respectively, in their overpotentials at 10 mA cm-2 compared to NiCo-LDH. Contact angle and adhesive force measurements proved the influence of morphology on the interfacial properties that layered structure is favorable for the timely detachment of the bubbles. Therefore, rational morphology regulation of LDH can effectively alter the gas-liquid-solid interface and thereby accelerate the reaction kinetics. The connections between morphologies, bubbles releasing and electrochemical performance are well established in this work, which can be applied in the investigation of nanomaterials for energy-related activities, especially the ones concerning bubbles releasing processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    阴离子氧化还原允许从晶格氧直接形成O-O键,并在析氧反应(OER)中提供比常规金属离子机制更高的催化。虽然以前的理论已经预测,实验已经提出了可能的O-O键,在OER过程中尚未直接观察到。在这项研究中,OK边缘的有效软X射线吸收光谱(sXAS),在插入[Cr(C2O4)3]3-后,对层状双CoFe氢氧化物(LDHs)进行了有效拉曼光谱。揭示了三步氧化过程,从Co2+到Co3+,进一步到Co4+(3d6L),并最终导致在阈值电压(1.4V)以上形成O-O键和O2析出。相比之下,在CoFeLDHs中观察到Fe的逐渐氧化。OER活性显着增强,在将[Cr(C2O4)3]3-嵌入CoFeLDHs中之后,在10mAcm-2时,过电位从300mV降低到248mV,强调阴离子氧化还原在促进水分解中的关键作用。
    Anionic redox allows the direct formation of O─O bonds from lattice oxygens and provides higher catalytic in the oxygen evolution reaction (OER) than does the conventional metal ion mechanism. While previous theories have predicted and experiments have suggested the possible O─O bond, it has not yet been directly observed in the OER process. In this study, operando soft X-ray absorption spectroscopy (sXAS) at the O K-edge and the operando Raman spectra is performed on layered double CoFe hydroxides (LDHs) after intercalation with [Cr(C2O4)3]3-, and revealed a three-step oxidation process, staring from Co2+ to Co3+, further to Co4+ (3d6L), and ultimately leading to the formation of O─O bonds and O2 evolution above a threshold voltage (1.4 V). In contrast, a gradual oxidation of Fe is observed in CoFe LDHs. The OER activity exhibits a significant enhancement, with the overpotential decreasing from 300 to 248 mV at 10 mA cm-2, following the intercalation of [Cr(C2O4)3]3- into CoFe LDHs, underscoring a crucial role of anionic redox in facilitating water splitting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究为创建高性能超级电容器电极提供了一种有前途的方法。该方法涉及制作一种独特的复合材料-在碳纳米球(CNB)上生长的镍钴层状双氢氧化物(NiCo-LDH)。这是通过首先从聚苯并恶嗪源产生富含氧和氮的特殊碳材料来实现的。起初,丁香酚,乙二胺和多聚甲醛进行曼尼希缩合形成苯并恶嗪单体,其在热存在下经历自聚以产生聚苯并恶嗪。然后将其碳化并活化以产生含有杂原子的CNB。然后,通过水热技术,NiCo-LDH纳米笼直接沉积在CNB上,消除了对复杂模板的需求。使用的CNB的量在性能中起着至关重要的作用。通过优化CNB含量至50%,实现了1220Fg-1的显著比电容,以及出色的倍率能力和令人印象深刻的循环稳定性,5000次循环后保持其电容的86%。此外,这种NiCo-LDH/CNB复合材料,当与超级电容器配置中的活性炭结合时,交付了出色的整体性能。这种复合材料的特殊性能,结合其简单和可扩展的合成过程,将其定位为下一代可持续能源存储设备的有力竞争者。易于制造也为其在先进的储能技术中的实际应用打开了大门。
    This study presents a promising method for creating high-performance supercapacitor electrodes. The approach involves crafting a unique composite material-nickel-cobalt-layered double hydroxides (NiCo-LDH) grown on carbon nanoballs (CNBs). This is achieved by first creating a special carbon material rich in oxygen and nitrogen from a polybenzoxazine source. At first, eugenol, ethylene diamine and paraformaldehyde undergo Mannich condensation to form the benzoxazine monomer, which undergoes self-polymerization in the presence of heat to produce polybenzoxazine. This was then carbonized and activated to produce CNBs containing heteroatoms. Then, through a hydrothermal technique, NiCo-LDH nanocages are directly deposited onto the CNBs, eliminating the need for complicated templates. The amount of CNBs used plays a crucial role in performance. By optimizing the CNB content to 50%, a remarkable specific capacitance of 1220 F g-1 was achieved, along with excellent rate capability and impressive cycling stability, retaining 86% of its capacitance after 5000 cycles. Furthermore, this NiCo-LDH/CNB composite, when combined with active carbon in a supercapacitor configuration, delivered outstanding overall performance. The exceptional properties of this composite, combined with its simple and scalable synthesis process, position it as a strong contender for next-generation sustainable energy storage devices. The ease of fabrication also opens doors for its practical application in advancing energy storage technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    吲哚美辛(INDO)具有基于抑制炎症过程中脂肪酸环氧合酶活性的作用机制。其作用机制可能与可能的抗癌活性有关,但是它在正常组织中的高毒性使治疗变得困难。通过共沉淀法,在层状双氢氧化物(LDH)混合基质中携带的药物将通过促进化疗重定向来减少其不期望的作用。因此,在50、70和90°C的温度和8、16、24和48小时的合成时间合成了包含插入LDH的INDO的不同样品,寻求最佳的结构组织。X射线衍射(XRD)振动傅里叶变换红外光谱(FT-IR),扫描电子显微镜(SEM),紫外可见分光光度分析,和差示热重分析(TGA/DTA)用于表征。我们的结果表明,通过共沉淀的更高温度和更长的合成时间降低了INDO嵌入的可能性。然而,可以建立16小时的时间和50°C的温度作为插层的最佳条件。体外结果证实了LDH-INDO样品(16小时和50°C)对胃癌(AGP01,ACP02和ACP03)的细胞活力潜力和抗癌活性,乳腺癌(MDA-MB-231和MCF-7),黑色素瘤(SK-MEL-19),肺成纤维细胞(MRC-5),MTT法检测非肿瘤性胃组织(MN01)。细胞增殖受到抑制,证明对MDA-MB-231和SK-MEL-19的毒性较高和较低。因此,建议将INDO的临床重定向作为化疗治疗中不可或缺的辅助抗癌药物。
    Indomethacin (INDO) has a mechanism of action based on inhibiting fatty acids cyclooxygenase activity within the inflammation process. The action mechanism could be correlated with possible anticancer activity, but its high toxicity in normal tissues has made therapy difficult. By the coprecipitation method, the drug carried in a layered double hydroxides (LDH) hybrid matrix would reduce its undesired effects by promoting chemotherapeutic redirection. Therefore, different samples containing INDO intercalated in LDH were synthesized at temperatures of 50, 70, and 90 °C and synthesis times of 8, 16, 24, and 48 h, seeking the best structural organization. X-ray diffraction (XRD), vibrational Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), spectrophotometric analysis in UV-VIS, and differential thermogravimetric analysis (TGA/DTA) were used for characterization. Our results indicate that higher temperatures and longer synthesis time through coprecipitation reduce the possibility of INDO intercalation. However, it was possible to establish a time of 16 h and a temperature of 50 °C as the best conditions for intercalation. In vitro results confirmed the cell viability potential and anticancer activity in the LDH-INDO sample (16 h and 50 °C) for gastric cancer (AGP01, ACP02, and ACP03), breast cancer (MDA-MB-231 and MCF-7), melanoma (SK-MEL-19), lung fibroblast (MRC-5), and non-neoplastic gastric tissue (MN01) by MTT assay. Cell proliferation was inhibited, demonstrating higher and lower toxicity against MDA-MB-231 and SK-MEL-19. Thus, a clinical redirection of INDO is suggested as an integral and adjunctive anticancer medication in chemotherapy treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金属基催化材料在降解类Fenton系统中的新兴污染物方面表现出优异的性能。然而,金属浸出的潜在风险已成为紧迫的环境问题。这项研究解决了与金属基催化材料的浸出行为和控制策略有关的科学问题。构建了创新的钴铝水滑石(CoAl-LDH)触发的过氧单硫酸盐(PMS)活化系统,并在各种水质环境中实现了环丙沙星(CIP)的几乎完全去除。值得注意的是,研究发现,由于中性水质的特殊性,CoAl-LDH发生了可调的离子交换和Al3稳定,导致与酸性条件(5.103mg/L)相比,Co2浸出水平(0.321mg/L)显着降低。鉴于此,机器学习技术首次用于模拟Co2+浸出的动态趋势,阐明了Al3+的重要调节作用和机制,水性基质,和反应速率。此外,基于不同水质和金属浸出水平的降解系统调节了SO4的生成水平。-和O2-,通过CIP降解产物和生态毒性分析,阐明了自由基攻击途径的独特优势。这些发现为金属基类Fenton水处理的工程应用和污染控制提供了新的见解和方法。
    Metal-based catalytic materials exhibit exceptional properties in degrading emerging pollutants within Fenton-like systems. However, the potential risk of metal leaching has become pressing environmental concern. This study addressed scientific issues pertaining to the leaching behavior and control strategies for metal-based catalytic materials. Innovative cobalt-aluminum hydrotalcite (CoAl-LDH) triggered peroxymonosulfate (PMS) activation system was constructed and achieved near-complete removal of Ciprofloxacin (CIP) across diverse water quality environments. Notably, it was found that the tunable ion exchange and Al3+ stabilization of CoAl-LDH occurred due to the particularity of neutral water quality, resulting in significantly lower Co2+ leaching levels (0.321 mg/L) compared to acidic conditions (5.103 mg/L). In light of this, machine learning technology was then employed for the first time to simulate the dynamic trend of Co2+ leaching and elucidated the critical regulatory roles and mechanisms of Al3+, aqueous matrix, and reaction rate. Furthermore, degradation systems based on different water quality and metal leaching levels regulated the generation levels of SO4.- and O2∙-, and the unique advantages of free radical attack paths were clarified through CIP degradation products and ecotoxicity analysis. These findings introduced novel insights and approaches for engineering application and pollution control in metal-based Fenton-like water treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含水可充电镍锌电池面临的主要挑战是其相对较低的能量密度和较差的循环稳定性。此外,这些阴极的制备程序是复杂的并且不容易扩展。在这里,我们利用MXene改进了NiCo层状双氢氧化物(LDH)的电沉积制备。受益于镍泡沫(NF)和镀液之间改善的界面接触以及基于MXene添加剂的镀液的离子电导率增强,所得的无粘合剂NiCoLDH电极可以实现超高面积负载(〜65mgcm-2),具有丰富的氧化还原反应活性表面,并保持短的离子扩散和电荷转移传输途径。此外,制造的碱性NiCoLDH基电池可提供高放电容量,高达20.2mAhcm-2(311mAhg-1),伴随着显着的倍率性能(9.6mAhcm-2或148mAhg-1在120mAcm-2)。由于MXenes/LDH基电极的高结构和化学稳定性,优异的循环寿命也可以达到88.6%的容量保留后10000次循环。此外,可以同时实现超高面积能量密度(31.2mWhcm-2)和重量能量密度(465Whkg-1)。这项工作激发了先进阴极材料的设计,以开发高性能的水性锌电池。
    The main challenges faced by aqueous rechargeable nickel-zinc batteries are their comparatively low energy density and poor cycling stability. Moreover, the preparation procedures of these cathodes are complex and not easily scalable. Herein, we utilized MXene to improve the electrodeposition preparation of NiCo layered double hydroxides (LDH). Benefiting from the improved interfacial contact between nickel foam (NF) and platting solution and the enhanced ionic conductivity of platting product based on MXene additives, the resulting binder-free NiCo LDH electrode can achieve ultrahigh areal loading (~65 mg cm-2) with abundant active surface for redox reactions and maintained short transport pathway for ion diffusion and charge transfer. Furthermore, the as-fabricated alkaline NiCo LDH-based battery delivers high discharge capacity, up to 20.2 mAh cm-2 (311 mAh g-1), accompanied by remarkable rate performance (9.6 mAh cm-2 or 148 mAh g-1 at 120 mA cm-2). Due to the high structural and chemical stability of MXenes/LDH-based electrode, excellent cycling life can also be achieved with 88.6% capacity retention after 10000 cycles. In addition, ultrahigh areal energy density (31.2 mWh cm-2) and gravimetric energy density (465 Wh kg-1) can be simultaneously achieved. This work has inspired the design of advanced cathode materials to develop high-performance aqueous zinc batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单原子催化剂(SAC)在基于过氧单硫酸盐(PMS)的高级氧化过程(AOPs)中的应用引起了广泛关注。然而,这些过程的催化途径和机制尚不清楚.在这项研究中,合成了NiFe-LDH,并通过形成Ru-O-M(M=Ni或Fe)键(Ru@NiFe-LDH)将单个Ru原子稳定地负载到其上。使用高角度环形暗场扫描TEM(HAADF-STEM)和X射线吸收精细结构光谱(XANES)证明了这一点。Ru@NiFe-LDH/PMS系统显示出高催化活性(仅30分钟内降解100%磺胺甲恶唑),高稳定性(连续运行400分钟后保持97%的反应性),和广泛的pH适用性(工作pH范围3-11)的AOPs。验证了高价物种(Ru(V)=O)和1O2在该反应中的关键作用。密度泛函理论(DFT)计算表明,电子转移产生带正电荷的Ru。这增强了带负电荷的PMS阴离子在Ru单原子位点上的吸附,因此,导致Ru-PMS*配合物的形成。这项研究表明,有机化合物和SAC之间的结构-功能关系在基于PMS的AOP中起着重要作用,并为高价物种在异质类Fenton系统中的作用提供了综合机制。
    The application of single-atom catalysts (SACs) to advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) has attracted considerable attention. However, the catalytic pathways and mechanisms underlying these processes remain unclear. In this study, NiFe-LDH was synthesized and single Ru atoms were stably loaded onto it by forming Ru-O-M (M=Ni or Fe) bonds (Ru@NiFe-LDH). This was demonstrated using high-angle annular dark-field scanning TEM (HAADF-STEM) and X-ray absorption fine structure spectra (XANES). The Ru@NiFe-LDH/PMS system showed a high catalytic reactivity (100 % sulfamethoxazole degradation in only 30 min), high stability (97 % reactivity was maintained after continuous operation for 400 min), and wide pH suitability (working pH range 3-11) for AOPs. The crucial roles of the high-valent species (Ru(V) = O) and 1O2 in this reaction were verified. Density functional theory (DFT) calculations revealed that electron transfer produced a positively charged Ru. This enhances the adsorption of negatively charged PMS anions onto the Ru monoatomic sites, thereby, causing the formation of Ru-PMS* complexes. This study implies that the structure-function relationship between organic compounds and SACs plays a significant role in PMS-based AOPs, and provides a comprehensive mechanism for the role of high-valent species in heterogeneous Fenton-like systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从环境保护和资源利用的角度来看,通过原位合成层状双氢氧化物(LDHs)对工业废水中金属离子的超稳定矿化已被认为是一种可持续的方法。在这里,该研究报告了包括镍在内的金属离子的超稳定矿化,Fe,Cr,Mn,Cu,Ca,Al,等。从冶炼废水中通过容易的共沉淀原位合成NiFe基LDHs。这种方法表现出优异的矿化效率的金属离子,同时可以去除数百个,成千上万,甚至数万mg/L的多种金属离子低于中国国家污染物排放标准值。此外,由于层压材料上多种金属的矿化作用,所获得的NiFe基LDHs表现出优异的苯酚羟基化催化性能,其中在室温下3h实现了48.24%的苯酚转化率和71.58%的二羟基苯选择性。这项工作为有害物质处置和资源利用提供了可持续的策略。
    The super-stable mineralization of metal ions from industrial wastewater by in situ synthesis of layered double hydroxides (LDHs) has been regarded as a sustainable approach from environmental protection and resource utilization perspectives. Herein, the study reports a super-stable mineralization of metal ions including Ni, Fe, Cr, Mn, Cu, Ca, Al, etc. from smelting wastewater by in situ synthesis of NiFe-based LDHs through facile coprecipitation. Such approach exhibits superior mineralization efficiency of metal ions simultaneously that can remove hundreds, thousands, or even tens of thousands mg/L of multiple metal ions to below the values of the Chinese National Emission Standards of Pollutants. Furthermore, the obtained NiFe-based LDHs exhibit excellent catalytic performance of phenol hydroxylation due to the mineralization of multiple metals on the laminates, where 48.24% conversion of phenol and 71.58% selectivity of dihydroxybenzenes are realized under room temperature for 3 h. This work paves a sustainable strategy for hazardous material disposal and resource utilization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号