Viral Tail Proteins

  • 文章类型: Journal Article
    DSR2,一种含有Sir2结构域的蛋白质,通过水解NAD+保护细菌免受噬菌体感染。DSR2的酶活性由SPR噬菌体尾管蛋白(TTP)触发,虽然受到SPbeta噬菌体编码的DSAD1蛋白的抑制,使噬菌体能够逃避宿主的防御。然而,激活和抑制DSR2的分子机制仍然难以捉摸。这里,我们报告了apoDSR2,DSR2-TTP-NAD和DSR2-DSAD1复合物的低温EM结构。DSR2组装成由其Sir2结构域介导的头对头四聚体。DSR2的C端螺旋区构成四个具有开放和封闭构象的配偶体结合腔。两个TTP分子与四个C末端空腔中的两个结合,诱导Sir2结构域的构象变化以激活DSR2。此外,DSAD1与激活剂竞争结合DSR2的C末端腔,有效抑制其酶活性。我们的结果提供了对DSR2介导的抗噬菌体防御系统和DSAD1依赖性噬菌体免疫逃避的机制见解。
    DSR2, a Sir2 domain-containing protein, protects bacteria from phage infection by hydrolyzing NAD+. The enzymatic activity of DSR2 is triggered by the SPR phage tail tube protein (TTP), while suppressed by the SPbeta phage-encoded DSAD1 protein, enabling phages to evade the host defense. However, the molecular mechanisms of activation and inhibition of DSR2 remain elusive. Here, we report the cryo-EM structures of apo DSR2, DSR2-TTP-NAD+ and DSR2-DSAD1 complexes. DSR2 assembles into a head-to-head tetramer mediated by its Sir2 domain. The C-terminal helical regions of DSR2 constitute four partner-binding cavities with opened and closed conformation. Two TTP molecules bind to two of the four C-terminal cavities, inducing conformational change of Sir2 domain to activate DSR2. Furthermore, DSAD1 competes with the activator for binding to the C-terminal cavity of DSR2, effectively suppressing its enzymatic activity. Our results provide the mechanistic insights into the DSR2-mediated anti-phage defense system and DSAD1-dependent phage immune evasion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类中的几种免疫途径将泛素样蛋白与病毒和宿主分子结合,作为抗病毒防御的手段1-5。在这里,我们研究了细菌中的抗噬菌体防御系统,包含泛素样蛋白,泛素缀合酶E1和E2,以及去泛素酶。我们证明在噬菌体感染期间,该系统将泛素样蛋白与噬菌体中央尾纤维特异性结合,尾部末端的蛋白质,对于尾部组装以及识别目标宿主受体至关重要。感染后,编码这个防御系统的细胞释放出部分组装的混合物,无尾噬菌体颗粒和完全组装的噬菌体,其中中央尾纤维被共价连接的泛素样蛋白阻塞。这些噬菌体显示严重受损的感染性,解释防御系统如何保护细菌种群免受噬菌体感染的传播。我们的发现表明,泛素样蛋白的结合是整个生命树保守的抗病毒策略。
    Several immune pathways in humans conjugate ubiquitin-like proteins to virus and host molecules as a means of antiviral defence1-5. Here we studied an antiphage defence system in bacteria, comprising a ubiquitin-like protein, ubiquitin-conjugating enzymes E1 and E2, and a deubiquitinase. We show that during phage infection, this system specifically conjugates the ubiquitin-like protein to the phage central tail fibre, a protein at the tip of the tail that is essential for tail assembly as well as for recognition of the target host receptor. Following infection, cells encoding this defence system release a mixture of partially assembled, tailless phage particles and fully assembled phages in which the central tail fibre is obstructed by the covalently attached ubiquitin-like protein. These phages show severely impaired infectivity, explaining how the defence system protects the bacterial population from the spread of phage infection. Our findings demonstrate that conjugation of ubiquitin-like proteins is an antiviral strategy conserved across the tree of life.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌可以重新利用自己的噬菌体病毒(噬菌体)来杀死竞争细菌。噬菌体衍生的元素通常在它们的杀伤活动中具有特异性,尽管有限的证据表明这种特异性驱动细菌种群动态。这里,我们在与野生植物相关的假单胞菌基因组的种群中鉴定了完整的噬菌体及其衍生元件。我们发现最丰富的病毒簇编码类似于噬菌体尾巴的噬菌体残留物,称为尾素,哪些细菌选择杀死细菌竞争者。每种致病性假单胞菌菌株都带有几种不同的尾素变体之一,这些变体靶向共同发生的致病性假单胞菌菌株的外膜中的可变多糖。对过去170年的植物标本室样品的分析表明,假单胞菌种群中仍然存在相同的尾素和细菌受体变体。这些结果表明,可以挖掘尾纤素的遗传多样性,以开发针对微生物控制的“尾纤素鸡尾酒”。
    Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted \"tailocin cocktails\" for microbial control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    毒素-抗毒素(TA)是由抗毒素中和的毒素组成的原核双基因系统。毒素-抗毒素-伴侣(TAC)系统另外包括SecB样伴侣,其通过识别其伴侣成瘾(ChAD)元件来稳定抗毒素。TACs介导抗噬菌体防御,但是病毒感知和限制的机制尚未被探索。我们确定了两个含有宿主生长抑制(HigBA)和CmdTATA模块的大肠杆菌抗噬菌体TAC系统,HigBAC和CmdTAC。HigBAC是通过识别噬菌体λ的gpV主要尾部蛋白而触发的。分子伴侣HigC通过类似的芳香分子模式识别gpV和ChAD,gpV胜过ChAD引发毒性。对于CmdTAC,CmdTADP-核糖基转移酶毒素修饰mRNA以停止蛋白质合成并限制噬菌体繁殖。最后,我们通过创建混合广谱抗噬菌体系统来建立TACs的模块化,该系统将CmdTATA弹头与HigC伴侣噬菌体传感器相结合。总的来说,这些发现揭示了TAC系统在广谱抗噬菌体防御中的潜力。
    Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    不动杆菌属包括与医院获得性感染相关的环境和临床相关物种。其中,鲍曼不动杆菌是一种重要的重点致病菌,为此,迫切需要研究和开发新的抗菌治疗策略。不动杆菌属。产生各种结构多样的荚膜多糖(CPSs),用一层厚厚的保护层包围着细菌细胞。这些表面结构是胶囊特异性噬菌体的主要受体,也就是说,携带具有CPS解聚/修饰活性的尾钉的噬菌体。噬菌体尾穗蛋白(TSP)表现出水解酶,裂解酶,或针对特定结构的相应CPS的酯酶活性。在这项研究中,感染不动杆菌属的所有裂解胶囊特异性噬菌体的数据。总结了截至2024年1月保存在NCBIGenBank数据库中的基因组。在143个噬菌体基因组中编码的149个鉴定的TSP中,46种蛋白质的囊膜特异性(K特异性)已通过实验确定或先前预测。63个TSP对CPS的特异性,由各种不动杆菌K型产生,在这项研究中使用生物信息学分析进行了预测。全面的系统发育分析证实了这一预测,并揭示了与不同TSP的CPS识别/降解部分相对应的基因区域在囊特异性不动杆菌噬菌体的形态学和分类学上的远缘群体之间进行遗传交换的可能性。
    The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    收缩注射系统(CIS)是装载介导各种生物过程的效应蛋白的原核噬菌体尾巴状纳米结构。尽管CIS功能已经通过进化多样化,并具有作为蛋白质递送系统的巨大潜力,CISs及其效应子的功能表征目前仅限于几个CIS谱系。这里,我们表明,大卫链霉菌的CISs属于分布在远处门的一组独特的细菌CISs,并促进该细菌的孢子形成分化。CIS损失导致细胞外DNA释放减少,生物量积累,和S.davawensis的孢子形成。CISs加载效应器,这是噬菌体检测蛋白的远程同源物,并且其C末端结构域具有负责CIS相关表型的核酸内切酶活性。我们的发现表明,CISs可以通过效应子的作用促进细菌的繁殖,并表明CIS效应子与病毒货物之间存在进化联系。
    Contractile injection systems (CISs) are prokaryotic phage tail-like nanostructures loading effector proteins that mediate various biological processes. Although CIS functions have been diversified through evolution and hold the great potential as protein delivery systems, the functional characterisation of CISs and their effectors is currently limited to a few CIS lineages. Here, we show that the CISs of Streptomyces davawensis belong to a unique group of bacterial CISs distributed across distant phyla and facilitate sporogenic differentiation of this bacterium. CIS loss results in decreases in extracellular DNA release, biomass accumulation, and spore formation in S. davawensis. CISs load an effector, which is a remote homolog of phage tapemeasure proteins, and its C-terminal domain has endonuclease activity responsible for the CIS-associated phenotypes. Our findings illustrate that CISs can contribute to the reproduction of bacteria through the action of the effector and suggest an evolutionary link between CIS effectors and viral cargos.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多功能生物传感器中识别和治疗功能的集成对于保障食品安全和减少食源性病原体引起的食源性疾病的发生具有重要意义。在这项研究中,通过将噬菌体尾穗蛋白(TSP)与金纳米颗粒(AuNPs@TSP)集成,开发了一种利用“感觉和治疗”方法的生物传感器。合成的AuNPs@TSP对鼠伤寒沙门氏菌表现出强烈的结合亲和力,引起颜色变化,并在暴露于近红外(NIR)辐射时表现出有效的杀菌活性。这种生物传感器有助于在50分钟内快速比色检测鼠伤寒沙门氏菌,在分析来自显色性结果的红-绿-蓝(RGB)值之后,智能手机APP上的LOD(检测限)为2.53×103CFU/mL输出。此外,生物传感器显示出高选择性,快速响应时间,和广泛的适用性,当测试与真实的样品。此外,该生物传感器在808nm光照6分钟下对鼠伤寒沙门氏菌表现出100%的显著有效抗菌效果。这项研究为生物传感器在食品工业中快速检测和根除食源性病原体的潜在利用提供了全面的调查。
    The integration of recognition and therapeutic functions in multifunctional biosensors is of great importance in guaranteeing food security and reducing the occurrence of foodborne illness caused by foodborne pathogens. In this study, a biosensor utilizing a \"sense-and-treat\" approach was developed by integrating phage tailspike protein (TSP) with gold nanoparticles (AuNPs@TSP). The synthesized AuNPs@TSP showed strong binding affinity towards Salmonella typhimurium causing color changes and exhibited effective bactericidal activity when exposed to near-infrared (NIR) irradiation. This biosensor facilitated rapid colorimetric detection of S. typhimurium in 50 min, with a LOD (limit of detection) of 2.53 × 103 CFU/mL output on a smartphone APP after analyzing the red-green-blue (RGB) values from color rendering results. Furthermore, the biosensor displayed high selectivity, rapid response time, and broad applicability when tested with real samples. Moreover, the biosensor exhibited a remarkably efficient antibacterial efficacy of 100 % against S. typhimurium under 808 nm light irradiation for 6 min. This study provides a comprehensive investigation into the potential utilization of biosensors for rapid detection and eradication of foodborne pathogens in food industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    噬菌体感染,微生物学中的一个关键过程,启动与噬菌体的尾巴识别和结合到细菌细胞表面,然后介导病毒DNA的注射。尽管对噬菌体λ与其外膜受体之间的相互作用进行了全面的研究,LamB,提供了有关系统生化特性的丰富信息,精确的分子机制仍未确定。这项研究揭示了噬菌体λ尾的高分辨率低温电子显微镜(cryo-EM)结构与其不可逆的志贺氏菌3070LamB受体和封闭的中央尾纤维复合。这些结构揭示了触发感染的复杂过程,并在LamB结合后证明了噬菌体λ尾尖的实质性构象变化。提供噬菌体λ感染起始的详细结构,这项研究有助于扩大λ-细菌相互作用的知识,这在微生物学和治疗发展领域具有重要意义。
    Bacteriophage infection, a pivotal process in microbiology, initiates with the phage\'s tail recognizing and binding to the bacterial cell surface, which then mediates the injection of viral DNA. Although comprehensive studies on the interaction between bacteriophage lambda and its outer membrane receptor, LamB, have provided rich information about the system\'s biochemical properties, the precise molecular mechanism remains undetermined. This study revealed the high-resolution cryo-electron microscopy (cryo-EM) structures of the bacteriophage lambda tail complexed with its irreversible Shigella sonnei 3070 LamB receptor and the closed central tail fiber. These structures reveal the complex processes that trigger infection and demonstrate a substantial conformational change in the phage lambda tail tip upon LamB binding. Providing detailed structures of bacteriophage lambda infection initiation, this study contributes to the expanding knowledge of lambda-bacterial interaction, which holds significance in the fields of microbiology and therapeutic development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    噬菌体感染细菌是一个复杂的多步骤过程,包括对宿主细胞的特异性识别,在主机信封中创建临时缺口,并将病毒DNA注入细菌细胞质。必须对这些步骤进行完美调节,以确保有效的感染。在这里,我们报告了噬菌体SPP1的尾部完成蛋白gp16.1的双重功能。首先,gp16.1在绑定到衣壳连接器的尾部接口的组装中具有辅助作用。第二,gp16.1是确保噬菌体DNA正确路由到细菌细胞质所必需的。在没有gp16.1的情况下组装的病毒颗粒与野生型病毒颗粒无法区分,并且通常在体外排出DNA。然而,它们在与宿主细菌相互作用后将DNA释放到细胞外空间。研究表明,在长尾噬菌体中,高度保守的尾部完成蛋白在病毒生命周期的两个基本步骤中具有不同的功能。
    Infection of bacteria by phages is a complex multi-step process that includes specific recognition of the host cell, creation of a temporary breach in the host envelope, and ejection of viral DNA into the bacterial cytoplasm. These steps must be perfectly regulated to ensure efficient infection. Here we report the dual function of the tail completion protein gp16.1 of bacteriophage SPP1. First, gp16.1 has an auxiliary role in assembly of the tail interface that binds to the capsid connector. Second, gp16.1 is necessary to ensure correct routing of phage DNA to the bacterial cytoplasm. Viral particles assembled without gp16.1 are indistinguishable from wild-type virions and eject DNA normally in vitro. However, they release their DNA to the extracellular space upon interaction with the host bacterium. The study shows that a highly conserved tail completion protein has distinct functions at two essential steps of the virus life cycle in long-tailed phages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:噬菌体疗法,重新成为一种有前途的方法来对抗抗菌素耐药性感染,依赖于对个体噬菌体特异性的全面理解。然而,噬菌体群体内的显著多样性提出了相当大的挑战。目前,明显缺乏用于大规模表征噬菌体受体结合蛋白的工具,这对确定噬菌体宿主范围至关重要。
    结果:在这项研究中,我们介绍SpikeHunter,基于ESM-2蛋白质语言模型的深度学习方法。有了SpikeHunter,我们鉴定了231,965种不同的噬菌体编码尾穗蛋白,针对细菌多糖受体的噬菌体特异性的关键决定因素,来自5个毒力的787,566个细菌基因组,抗生素抗性病原体。值得注意的是,这些蛋白质中的86.60%(143,200)表现出与特定细菌多糖的强关联。我们发现,具有相同尾穗蛋白的噬菌体可以感染具有相似多糖受体的不同细菌物种,强调尾穗蛋白在确定宿主范围中的关键作用。特异性主要归因于蛋白质的C端结构域,这与尾穗蛋白的结构域交换过程中的宿主特异性严格相关。重要的是,我们的数据集驱动的噬菌体-宿主特异性预测与我们研究的真实世界噬菌体治疗病例中观察到的噬菌体-宿主对紧密匹配.
    结论:我们的研究提供了丰富的资源,包括方法和来自大规模基因组学调查的数据库。这实质上增强了在菌株水平上对噬菌体特异性决定子的理解,并且提供了用于指导治疗应用中的噬菌体选择的有价值的框架。
    Phage therapy, reemerging as a promising approach to counter antimicrobial-resistant infections, relies on a comprehensive understanding of the specificity of individual phages. Yet the significant diversity within phage populations presents a considerable challenge. Currently, there is a notable lack of tools designed for large-scale characterization of phage receptor-binding proteins, which are crucial in determining the phage host range.
    In this study, we present SpikeHunter, a deep learning method based on the ESM-2 protein language model. With SpikeHunter, we identified 231,965 diverse phage-encoded tailspike proteins, a crucial determinant of phage specificity that targets bacterial polysaccharide receptors, across 787,566 bacterial genomes from 5 virulent, antibiotic-resistant pathogens. Notably, 86.60% (143,200) of these proteins exhibited strong associations with specific bacterial polysaccharides. We discovered that phages with identical tailspike proteins can infect different bacterial species with similar polysaccharide receptors, underscoring the pivotal role of tailspike proteins in determining host range. The specificity is mainly attributed to the protein\'s C-terminal domain, which strictly correlates with host specificity during domain swapping in tailspike proteins. Importantly, our dataset-driven predictions of phage-host specificity closely match the phage-host pairs observed in real-world phage therapy cases we studied.
    Our research provides a rich resource, including both the method and a database derived from a large-scale genomics survey. This substantially enhances understanding of phage specificity determinants at the strain level and offers a valuable framework for guiding phage selection in therapeutic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号