Viral Tail Proteins

  • 文章类型: Journal Article
    DSR2,一种含有Sir2结构域的蛋白质,通过水解NAD+保护细菌免受噬菌体感染。DSR2的酶活性由SPR噬菌体尾管蛋白(TTP)触发,虽然受到SPbeta噬菌体编码的DSAD1蛋白的抑制,使噬菌体能够逃避宿主的防御。然而,激活和抑制DSR2的分子机制仍然难以捉摸。这里,我们报告了apoDSR2,DSR2-TTP-NAD和DSR2-DSAD1复合物的低温EM结构。DSR2组装成由其Sir2结构域介导的头对头四聚体。DSR2的C端螺旋区构成四个具有开放和封闭构象的配偶体结合腔。两个TTP分子与四个C末端空腔中的两个结合,诱导Sir2结构域的构象变化以激活DSR2。此外,DSAD1与激活剂竞争结合DSR2的C末端腔,有效抑制其酶活性。我们的结果提供了对DSR2介导的抗噬菌体防御系统和DSAD1依赖性噬菌体免疫逃避的机制见解。
    DSR2, a Sir2 domain-containing protein, protects bacteria from phage infection by hydrolyzing NAD+. The enzymatic activity of DSR2 is triggered by the SPR phage tail tube protein (TTP), while suppressed by the SPbeta phage-encoded DSAD1 protein, enabling phages to evade the host defense. However, the molecular mechanisms of activation and inhibition of DSR2 remain elusive. Here, we report the cryo-EM structures of apo DSR2, DSR2-TTP-NAD+ and DSR2-DSAD1 complexes. DSR2 assembles into a head-to-head tetramer mediated by its Sir2 domain. The C-terminal helical regions of DSR2 constitute four partner-binding cavities with opened and closed conformation. Two TTP molecules bind to two of the four C-terminal cavities, inducing conformational change of Sir2 domain to activate DSR2. Furthermore, DSAD1 competes with the activator for binding to the C-terminal cavity of DSR2, effectively suppressing its enzymatic activity. Our results provide the mechanistic insights into the DSR2-mediated anti-phage defense system and DSAD1-dependent phage immune evasion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    不动杆菌属包括与医院获得性感染相关的环境和临床相关物种。其中,鲍曼不动杆菌是一种重要的重点致病菌,为此,迫切需要研究和开发新的抗菌治疗策略。不动杆菌属。产生各种结构多样的荚膜多糖(CPSs),用一层厚厚的保护层包围着细菌细胞。这些表面结构是胶囊特异性噬菌体的主要受体,也就是说,携带具有CPS解聚/修饰活性的尾钉的噬菌体。噬菌体尾穗蛋白(TSP)表现出水解酶,裂解酶,或针对特定结构的相应CPS的酯酶活性。在这项研究中,感染不动杆菌属的所有裂解胶囊特异性噬菌体的数据。总结了截至2024年1月保存在NCBIGenBank数据库中的基因组。在143个噬菌体基因组中编码的149个鉴定的TSP中,46种蛋白质的囊膜特异性(K特异性)已通过实验确定或先前预测。63个TSP对CPS的特异性,由各种不动杆菌K型产生,在这项研究中使用生物信息学分析进行了预测。全面的系统发育分析证实了这一预测,并揭示了与不同TSP的CPS识别/降解部分相对应的基因区域在囊特异性不动杆菌噬菌体的形态学和分类学上的远缘群体之间进行遗传交换的可能性。
    The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    收缩注射系统(CIS)是装载介导各种生物过程的效应蛋白的原核噬菌体尾巴状纳米结构。尽管CIS功能已经通过进化多样化,并具有作为蛋白质递送系统的巨大潜力,CISs及其效应子的功能表征目前仅限于几个CIS谱系。这里,我们表明,大卫链霉菌的CISs属于分布在远处门的一组独特的细菌CISs,并促进该细菌的孢子形成分化。CIS损失导致细胞外DNA释放减少,生物量积累,和S.davawensis的孢子形成。CISs加载效应器,这是噬菌体检测蛋白的远程同源物,并且其C末端结构域具有负责CIS相关表型的核酸内切酶活性。我们的发现表明,CISs可以通过效应子的作用促进细菌的繁殖,并表明CIS效应子与病毒货物之间存在进化联系。
    Contractile injection systems (CISs) are prokaryotic phage tail-like nanostructures loading effector proteins that mediate various biological processes. Although CIS functions have been diversified through evolution and hold the great potential as protein delivery systems, the functional characterisation of CISs and their effectors is currently limited to a few CIS lineages. Here, we show that the CISs of Streptomyces davawensis belong to a unique group of bacterial CISs distributed across distant phyla and facilitate sporogenic differentiation of this bacterium. CIS loss results in decreases in extracellular DNA release, biomass accumulation, and spore formation in S. davawensis. CISs load an effector, which is a remote homolog of phage tapemeasure proteins, and its C-terminal domain has endonuclease activity responsible for the CIS-associated phenotypes. Our findings illustrate that CISs can contribute to the reproduction of bacteria through the action of the effector and suggest an evolutionary link between CIS effectors and viral cargos.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    噬菌体感染,微生物学中的一个关键过程,启动与噬菌体的尾巴识别和结合到细菌细胞表面,然后介导病毒DNA的注射。尽管对噬菌体λ与其外膜受体之间的相互作用进行了全面的研究,LamB,提供了有关系统生化特性的丰富信息,精确的分子机制仍未确定。这项研究揭示了噬菌体λ尾的高分辨率低温电子显微镜(cryo-EM)结构与其不可逆的志贺氏菌3070LamB受体和封闭的中央尾纤维复合。这些结构揭示了触发感染的复杂过程,并在LamB结合后证明了噬菌体λ尾尖的实质性构象变化。提供噬菌体λ感染起始的详细结构,这项研究有助于扩大λ-细菌相互作用的知识,这在微生物学和治疗发展领域具有重要意义。
    Bacteriophage infection, a pivotal process in microbiology, initiates with the phage\'s tail recognizing and binding to the bacterial cell surface, which then mediates the injection of viral DNA. Although comprehensive studies on the interaction between bacteriophage lambda and its outer membrane receptor, LamB, have provided rich information about the system\'s biochemical properties, the precise molecular mechanism remains undetermined. This study revealed the high-resolution cryo-electron microscopy (cryo-EM) structures of the bacteriophage lambda tail complexed with its irreversible Shigella sonnei 3070 LamB receptor and the closed central tail fiber. These structures reveal the complex processes that trigger infection and demonstrate a substantial conformational change in the phage lambda tail tip upon LamB binding. Providing detailed structures of bacteriophage lambda infection initiation, this study contributes to the expanding knowledge of lambda-bacterial interaction, which holds significance in the fields of microbiology and therapeutic development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    噬菌体感染细菌是一个复杂的多步骤过程,包括对宿主细胞的特异性识别,在主机信封中创建临时缺口,并将病毒DNA注入细菌细胞质。必须对这些步骤进行完美调节,以确保有效的感染。在这里,我们报告了噬菌体SPP1的尾部完成蛋白gp16.1的双重功能。首先,gp16.1在绑定到衣壳连接器的尾部接口的组装中具有辅助作用。第二,gp16.1是确保噬菌体DNA正确路由到细菌细胞质所必需的。在没有gp16.1的情况下组装的病毒颗粒与野生型病毒颗粒无法区分,并且通常在体外排出DNA。然而,它们在与宿主细菌相互作用后将DNA释放到细胞外空间。研究表明,在长尾噬菌体中,高度保守的尾部完成蛋白在病毒生命周期的两个基本步骤中具有不同的功能。
    Infection of bacteria by phages is a complex multi-step process that includes specific recognition of the host cell, creation of a temporary breach in the host envelope, and ejection of viral DNA into the bacterial cytoplasm. These steps must be perfectly regulated to ensure efficient infection. Here we report the dual function of the tail completion protein gp16.1 of bacteriophage SPP1. First, gp16.1 has an auxiliary role in assembly of the tail interface that binds to the capsid connector. Second, gp16.1 is necessary to ensure correct routing of phage DNA to the bacterial cytoplasm. Viral particles assembled without gp16.1 are indistinguishable from wild-type virions and eject DNA normally in vitro. However, they release their DNA to the extracellular space upon interaction with the host bacterium. The study shows that a highly conserved tail completion protein has distinct functions at two essential steps of the virus life cycle in long-tailed phages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:噬菌体疗法,重新成为一种有前途的方法来对抗抗菌素耐药性感染,依赖于对个体噬菌体特异性的全面理解。然而,噬菌体群体内的显著多样性提出了相当大的挑战。目前,明显缺乏用于大规模表征噬菌体受体结合蛋白的工具,这对确定噬菌体宿主范围至关重要。
    结果:在这项研究中,我们介绍SpikeHunter,基于ESM-2蛋白质语言模型的深度学习方法。有了SpikeHunter,我们鉴定了231,965种不同的噬菌体编码尾穗蛋白,针对细菌多糖受体的噬菌体特异性的关键决定因素,来自5个毒力的787,566个细菌基因组,抗生素抗性病原体。值得注意的是,这些蛋白质中的86.60%(143,200)表现出与特定细菌多糖的强关联。我们发现,具有相同尾穗蛋白的噬菌体可以感染具有相似多糖受体的不同细菌物种,强调尾穗蛋白在确定宿主范围中的关键作用。特异性主要归因于蛋白质的C端结构域,这与尾穗蛋白的结构域交换过程中的宿主特异性严格相关。重要的是,我们的数据集驱动的噬菌体-宿主特异性预测与我们研究的真实世界噬菌体治疗病例中观察到的噬菌体-宿主对紧密匹配.
    结论:我们的研究提供了丰富的资源,包括方法和来自大规模基因组学调查的数据库。这实质上增强了在菌株水平上对噬菌体特异性决定子的理解,并且提供了用于指导治疗应用中的噬菌体选择的有价值的框架。
    Phage therapy, reemerging as a promising approach to counter antimicrobial-resistant infections, relies on a comprehensive understanding of the specificity of individual phages. Yet the significant diversity within phage populations presents a considerable challenge. Currently, there is a notable lack of tools designed for large-scale characterization of phage receptor-binding proteins, which are crucial in determining the phage host range.
    In this study, we present SpikeHunter, a deep learning method based on the ESM-2 protein language model. With SpikeHunter, we identified 231,965 diverse phage-encoded tailspike proteins, a crucial determinant of phage specificity that targets bacterial polysaccharide receptors, across 787,566 bacterial genomes from 5 virulent, antibiotic-resistant pathogens. Notably, 86.60% (143,200) of these proteins exhibited strong associations with specific bacterial polysaccharides. We discovered that phages with identical tailspike proteins can infect different bacterial species with similar polysaccharide receptors, underscoring the pivotal role of tailspike proteins in determining host range. The specificity is mainly attributed to the protein\'s C-terminal domain, which strictly correlates with host specificity during domain swapping in tailspike proteins. Importantly, our dataset-driven predictions of phage-host specificity closely match the phage-host pairs observed in real-world phage therapy cases we studied.
    Our research provides a rich resource, including both the method and a database derived from a large-scale genomics survey. This substantially enhances understanding of phage specificity determinants at the strain level and offers a valuable framework for guiding phage selection in therapeutic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非感染性病毒样纳米颗粒模拟天然病毒结构,可以通过插入外源蛋白片段进行修饰,使它们成为抗原呈递的免疫原性工具。这项研究调查了,第一次,由酵母表达的噬菌体vB_EcoS_NBD2的尾管蛋白gp39形成的长而柔性多管的免疫原性,并评估了它们引发针对插入的蛋白质片段的免疫应答的能力。基于蛋白gp39的多管诱导小鼠体液免疫应答,即使不使用佐剂。生物信息学分析指导从鲍曼不动杆菌中选择插入gp39C末端的蛋白质片段。嵌合聚管,显示28个氨基酸长的OmpA蛋白片段,在免疫小鼠中诱导针对OmpA蛋白片段的IgG应答。这些多管证明了它们作为抗原载体和佐剂的有效性,当OmpA片段显示在嵌合多管上或与未修饰的多管一起使用时。我们的发现扩展了长而柔性的聚管的潜在应用,有助于开发具有改进的免疫原性和抗原呈递能力的新型抗原载体。
    Non-infectious virus-like nanoparticles mimic native virus structures and can be modified by inserting foreign protein fragments, making them immunogenic tools for antigen presentation. This study investigated, for the first time, the immunogenicity of long and flexible polytubes formed by yeast-expressed tail tube protein gp39 of bacteriophage vB_EcoS_NBD2 and evaluated their ability to elicit an immune response against the inserted protein fragments. Protein gp39-based polytubes induced humoral immune response in mice, even without the use of adjuvant. Bioinformatics analysis guided the selection of protein fragments from Acinetobacter baumannii for insertion into the C-terminus of gp39. Chimeric polytubes, displaying 28-amino acid long OmpA protein fragment, induced IgG response against OmpA protein fragment in immunized mice. These polytubes demonstrated their effectiveness both as antigen carrier and an adjuvant, when the OmpA fragments were either displayed on chimeric polytubes or used alongside with the unmodified polytubes. Our findings expand the potential applications of long and flexible polytubes, contributing to the development of novel antigen carriers with improved immunogenicity and antigen presentation capabilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鞭毛型噬菌体χ(Chi)通过鞭毛丝感染细菌。尽管经过多年的研究,它的结构架构仍然具有部分特征。通过低温EM,我们揭示了χ的几乎完整的结构,包括衣壳,脖子,尾巴,和尾尖。虽然衣壳和尾部类似于噬菌体YSD1,但颈部和尾部尖端揭示了新的蛋白质及其排列。颈部显示出独特的尾管蛋白构象,形成连接到颈部的插座状结构。尾尖包含四种蛋白质,包括远端尾蛋白(DTP),两个基板hub蛋白(BHylP和BH2P),和尾尖组装蛋白(TAP),与其他虹吸管相比,显示出最小的组织。偏离了其他虹吸管的共识,χ中的DTP形成三聚体组装,在尖端将尾巴对称性从6倍减少到3倍。这些发现阐明了以前未探索的χ的颈部和尾部尖端的结构组织。
    The flagellotropic bacteriophage χ (Chi) infects bacteria via the flagellar filament. Despite years of study, its structural architecture remains partly characterized. Through cryo-EM, we unveil χ\'s nearly complete structure, encompassing capsid, neck, tail, and tail tip. While the capsid and tail resemble phage YSD1, the neck and tail tip reveal new proteins and their arrangement. The neck shows a unique conformation of the tail tube protein, forming a socket-like structure for attachment to the neck. The tail tip comprises four proteins, including distal tail protein (DTP), two baseplate hub proteins (BH1P and BH2P), and tail tip assembly protein (TAP) exhibiting minimal organization compared to other siphophages. Deviating from the consensus in other siphophages, DTP in χ forms a trimeric assembly, reducing tail symmetry from 6-fold to 3-fold at the tip. These findings illuminate the previously unexplored structural organization of χ\'s neck and tail tip.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    休眠噬菌体通过表达不同的免疫系统来保护溶原细胞,必须避免在激活时瞄准他们的同源预言。在这里,我们报告了多个金黄色葡萄球菌,编码Tha(尾巴激活,HEPN(高等真核生物和原核生物核苷酸结合)域含有抗噬菌体系统),由传入噬菌体的结构尾部蛋白激活的防御系统。我们演示了两个Tha系统的功能,Tha-1和Tha-2,由不同的尾部蛋白激活。有趣的是,Tha系统还可以阻止诱导的tha阳性预言的繁殖。为了防止原虫诱导后的自身免疫,这些系统被先前认为编码切除酶的小的重叠反义基因的产物所抑制。这个基因组织,保存在金黄色葡萄球菌中,允许Tha系统保护噬菌体及其细菌宿主免受噬菌体捕食,并在噬菌体诱导过程中关闭,平衡免疫和自身免疫。我们的结果表明,对这些过程的精细调节对于正确发展先知的生命周期至关重要。
    Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages\' life cycle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虹吸有很长的时间,灵活,和通过颈部连接到衣壳的无收缩尾巴。噬菌体尾巴对于宿主细胞识别和病毒-宿主细胞相互作用至关重要;此外,它在感染期间充当基因组传递的通道。然而,虹吸管颈-尾复合体的原位高分辨率结构仍然未知。这里,我们提出了虹吸λ的结构“野生型,“使用最广泛的,实验室适应的无纤维突变体。颈-尾复合物包括由堆叠的12倍和六聚体环和3倍对称尖端形成的通道。已经表征了DNA与形成尾部和颈部的总共246个尾部蛋白质分子之间的相互作用。尾部尖端的结构比较,lambda和其他长尾噬菌体或类似尾巴的机器中最多样化的区域,表明它们的尾尖包含保守的结构域,便于尾部组装,受体结合,细胞吸附,和DNA保留/释放。这些结构域分布在不同噬菌体或类似尾巴的机器中的不同尾尖蛋白中。在附着期间,噬菌体颗粒不需要侧尾纤维使其自身垂直于宿主细胞的表面定向。
    Siphophages have a long, flexible, and noncontractile tail that connects to the capsid through a neck. The phage tail is essential for host cell recognition and virus-host cell interactions; moreover, it serves as a channel for genome delivery during infection. However, the in situ high-resolution structure of the neck-tail complex of siphophages remains unknown. Here, we present the structure of the siphophage lambda \"wild type,\" the most widely used, laboratory-adapted fiberless mutant. The neck-tail complex comprises a channel formed by stacked 12-fold and hexameric rings and a 3-fold symmetrical tip. The interactions among DNA and a total of 246 tail protein molecules forming the tail and neck have been characterized. Structural comparisons of the tail tips, the most diversified region across the lambda and other long-tailed phages or tail-like machines, suggest that their tail tip contains conserved domains, which facilitate tail assembly, receptor binding, cell adsorption, and DNA retaining/releasing. These domains are distributed in different tail tip proteins in different phages or tail-like machines. The side tail fibers are not required for the phage particle to orient itself vertically to the surface of the host cell during attachment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号