Valinomycin

缬霉素
  • 文章类型: Journal Article
    (1)背景:使用磷酸化组蛋白生物标志物(γH2AX)在体外检测DNA双链断裂是一种越来越流行的体外遗传毒性测量方法,因为它很敏感,具体和适用于高通量分析。通过流式细胞术或显微镜检测γH2AX反应,后者更容易获得。然而,作者很少发布细节,数据,以及总体荧光强度量化的工作流程,这阻碍了可重复性。(2)方法:我们使用戊霉素作为模型的基因毒素,两种细胞系(HeLa和CHO-K1)和用于γH2AX免疫荧光检测的商业试剂盒。使用开源软件ImageJ进行生物图像分析。使用来自DAPI通道的分段核测量平均荧光值,并且结果表示为相对于对照的γH2AX荧光的面积缩放的相对倍数变化。细胞毒性表示为细胞核的相对面积。我们介绍了工作流程,数据,和GitHub上的脚本。(3)结果:通过引入的方法获得的输出与预期结果一致,即,戊霉素对孵育24小时后使用的两种细胞系均具有遗传毒性和细胞毒性。(4)结论:从生物图像分析获得的γH2AX的整体荧光强度似乎是流式细胞术的有希望的替代方法。工作流,数据,和脚本共享对于进一步改进生物图像分析方法至关重要。
    (1) Background: The detection of DNA double-strand breaks in vitro using the phosphorylated histone biomarker (γH2AX) is an increasingly popular method of measuring in vitro genotoxicity, as it is sensitive, specific and suitable for high-throughput analysis. The γH2AX response is either detected by flow cytometry or microscopy, the latter being more accessible. However, authors sparsely publish details, data, and workflows from overall fluorescence intensity quantification, which hinders the reproducibility. (2) Methods: We used valinomycin as a model genotoxin, two cell lines (HeLa and CHO-K1) and a commercial kit for γH2AX immunofluorescence detection. Bioimage analysis was performed using the open-source software ImageJ. Mean fluorescent values were measured using segmented nuclei from the DAPI channel and the results were expressed as the area-scaled relative fold change in γH2AX fluorescence over the control. Cytotoxicity is expressed as the relative area of the nuclei. We present the workflows, data, and scripts on GitHub. (3) Results: The outputs obtained by an introduced method are in accordance with expected results, i.e., valinomycin was genotoxic and cytotoxic to both cell lines used after 24 h of incubation. (4) Conclusions: The overall fluorescence intensity of γH2AX obtained from bioimage analysis appears to be a promising alternative to flow cytometry. Workflow, data, and script sharing are crucial for further improvement of the bioimage analysis methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The aggregation of β-amyloid (Aβ) peptide in Alzheimer\'s disease (AD) is characterized by mitochondrial dysfunction and mitophagy impairment. Mitophagy is a homeostatic mechanism by which autophagy selectively eliminates damaged mitochondria. Valinomycin is a respiratory chain inhibitor that activates mitophagy via the PINK1/Parkin signaling pathway. However, the mechanism underlying the association between mitophagy and valinomycin in Aβ formation has not been explored. Here, we demonstrate that genetically modified (N2a/APP695swe) cells overexpressing a mutant amyloid precursor protein (APP) serve as an in vitro model of AD for studying mitophagy and ATP-related metabolomics. Our results prove that valinomycin induced a time-dependent increase in the mitophagy activation of N2a/APP695swe cells as indicated by increased levels of PINK1, Parkin, and LC3II as well as increased the colocalization of Parkin-Tom20 and fewer mitochondria (indicated by decreased Tom20 levels). Valinomycin significantly decreased Aβ1-42 and Aβ1-40 levels after 3 h of treatment. ATP levels and ATP-related metabolites were significantly increased at this time. Our findings suggest that the elimination of impaired mitochondria via valinomycin-induced mitophagy ameliorates AD by decreasing Aβ and improving ATP levels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    In studying ion-selectivity in biomaterials, it is common to study ion-protein interactions within a local neighborhood around the ion. This local system analysis for the S(2) site of KcsA, its semisynthetic analog, and valinomycin yields the free energy change in exchanging K(+) with Na(+) in quantitative agreement with the value obtained by considering ion-interactions with the entire system. But the energetics of ion binding in the local system and in the entire system differ significantly and lead to different conclusions regarding the physical basis of ion selectivity. For configurations sampled from an all-atom simulation, we show that the selectivity free energy can be decomposed into a contribution arising from interactions of the ion with its local neighborhood, ΔW(local), and a term arising from the field imposed on the ion and the binding site by the rest of the medium, ΔW(ϕ). The local contribution ΔW(local) is numerically close to the actual free energy difference because the field contribution is small. The field contribution is small because of cancellation of inversely related ion-medium and site-medium interactions. Our analysis presents a rigorous foundation for the numerical success of the local system analysis and shows that its implications do not always hold for the entire protein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • DOI:
    文章类型: English Abstract
    Prospects of the use of flow cytometry analysis for investigation of forming K(+)- equilibrium membrane potential on the experimental model of myometrium plasma membrane vesicles in the presence of valinomycine using potential-sensitive probe of DiOC6(3). Transmembrane potential magnitude corresponds to magnitude by Nernst\'s equation. H2O2 and NO2-, probably, increase permeability of membrane for K+ and result in potential dissipation. Given effect is not shown for sodium nitroprusside. The obtained results confirm an assumption as to enhancing the passive transport for K+ through sarcolemma under the action of these substances, that can lead to membrane repolarisation and decline of the level of its excitability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Bromosulfalein is an organic anion dye used in the study of a variety of membrane carriers expressed in animal tissues and involved in transport of drugs and metabolites. The spectrophotometric assay of electrogenic bromosulfalein transport in membrane vesicles, isolated from various mammalian organs or tissues, enables to specifically measure the transport activity of bilitranslocase (TCDB 2.A.65.1.1). The latter is a bilirubin- and flavonoid-specific transporter expressed in rat liver, the organ where its function has been best characterized. The spectrophotometric assay of electrogenic bromosulfalein transport requires minimal volumes of membrane vesicles, is completed within 1 min, and, therefore, is a useful tool to screen the transporter spectrum of potential substrates, by testing them as reversible inhibitors of bromosulfalein transport kinetics. Furthermore, the assay enables to study the progress of time-dependent inactivation of bromosulfalein transport, caused by different protein-specific reagents, including specific anti-sequence antibodies. Inactivation can be retarded by the presence of substrates in a concentration-dependent manner, enabling to derive the dissociation constants of the transporter-substrate complex and thus to gain further insight into the transporter structure-function relationship. This assay, implemented in membrane vesicles isolated from plant organs, has paved the way to the discovery of homologues of bilitranslocase in plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Selected fluorinated and hydrogenated surfactants, namely a semifluorinated alkane (SFA): 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-henicosafluorononacosane (F10H19), two long chain alcohols: 18,18,18,17,17,16,16,15,15,14,14,13,13,12,12,11,11-heptadecafluorooctadecane-1-ol (F8H10OH) and octadecane-1-ol (C18OH) and with two long chain thiols of the analogous apolar part structure to the above-mentioned alcohols, i.e.: 18,18,18,17,17,16,16,15,15,14,14,13,13,12,12,11,11-heptadecafluorooctadecane-1-thiol (F8H10SH) and octadecane-1-thiol (C18SH) have been tested in mixtures with valinomycin as potential artificial matrixes for its immobilization. The thermodynamic analysis (DeltaG(exc)vsX(val) plots) based on surface pressure-area isotherm registration for particular valinomycin/surfactant mixtures, complemented with BAM images of the films structure indicate that only fluorinated surfactants are suitable materials for valinomycin incorporation as they form homogeneous miscible monolayers at X(val) below 0.5.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This study is focused on the characterization of interactions of valinomycin (Val), a macrocyclic dodecadepsipeptide antibiotic ionophore, with rubidium cation, Rb(+). Capillary affinity electrophoresis was employed for the experimental evaluation of the strength of the Val-Rb(+) complex. The study involved the measurement of the change of effective electrophoretic mobility of Val at increasing concentration of Rb(+) cation in the BGE. From the dependence of Val effective electrophoretic mobility on the Rb(+) cation concentration in the BGE (methanolic solution of 100 mM Tris, 50 mM acetic acid, 0-1 mM RbCl), the apparent binding (stability) constant (K(b)) of the Val-Rb(+) complex in methanol was evaluated as log K(b)=4.63+/-0.27. According to the quantum mechanical density functional theory calculations employed to predict the most probable structure of Val-Rb(+) complex, Val is stabilized by strong non-covalent bond interactions of Rb(+) with six ester carbonyl oxygen atoms so that the position of the \"central\" Rb(+) cation in the Val cage is symmetric.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The interactions of valinomycin, macrocyclic depsipeptide antibiotic ionophore, with ammonium cation NH4+ have been investigated. Using quantum mechanical density functional theory (DFT) calculations, the most probable structure of the valinomycin-NH4+ complex species was predicted. In this complex, the ammonium cation is bound partly by three strong hydrogen bonds to three ester carbonyl oxygen atoms of valinomycin and partly by somewhat weaker hydrogen bonds to the remaining three ester carbonyl groups of the valinomycin ligand. The strength of the valinomycin-NH4+ complex was evaluated experimentally by capillary affinity electrophoresis. From the dependence of valinomycin effective electrophoretic mobility on the ammonium ion concentration in the background electrolyte, the apparent binding (association, stability) constant (Kb) of the valinomycin-NH4+ complex in methanol was evaluated as log Kb = 1.52 +/- 0.22.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This review describes voltammetric studies on ion transport from one aqueous phase (W1) to another (W2) across a bilayer lipid membrane (BLM) containing a hydrophobic ion, valinomycin (Val) or gramicidin A (GA). In particular, the ion transport mechanisms are discussed in terms of the distribution of a pair of ions between aqueous and BLM phases. By addition of a small amount of hydrophobic ion into W1 and/or W2 containing a hydrophilic salt as a supporting electrolyte, the hydrophobic ion was distributed into the BLM with the counter ion to maintain electroneutrality within the BLM phase. It was found that the counter ion was transferred between W1 and W2 across the BLM by applying a membrane potential. Facilitated transport of alkali ions across a BLM containing Val as an ion carrier compound, could be interpreted by considering not only the formation of the alkali metal ion-Val complex but also the distribution of both the objective cation and the counter ion. In the case of addition of GA as a channel-forming compound into the BLM, the facilitated transport of alkali ions across the BLM depended on the ionic species of the counter ions. It was discovered that the influence of the counter ion on the facilitated transport of alkali ions across the BLM could be explained in terms of the hydrophobicity and the ionic radius of the counter ion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The mammalian intestinal epithelium has been found, based on in vivo experiments, to be resistant to insecticidal Cry toxins, which are derived from Bacillus thuringiensis and fatally damage insect midgut cells. Thus, the toxins are commonly used as a genetic resource in insect-resistant transgenic plants for feed. However, Cry toxins bind to the cellular brush border membrane vesicle (BBMV) of mammalian intestinal cells. In this study, we investigated the affinity of Cry1Ab toxin, a lepidopteran-specific Cry1-type toxin, to the cellular BBMV of two mammalian intestinal cells as well as the effect of the toxin on the membrane potential of three mammalian intestinal cells compared to its effects on the silkworm midgut cell. We found that Cry1Ab toxin did bind to the bovine and porcine BBMV, but far more weakly than it did to the silkworm midgut BBMV. Furthermore, although the silkworm midgut cells developed severe membrane potential changes within 1 h following the toxin treatment at a final concentration of 2 mug/ml, no such membraneous changes were observed on the bovine, porcine, and human intestinal cells. The present in vitro results suggest that, although Cry1Ab toxin may bind weakly or nonspecifically to certain BBMV components in the mammalian intestinal cell, it does not damage the cell\'s membrane integrity, thus exerting no subsequent adverse effects on the cell.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号