Polycyclic aromatic hydrocarbons (PAHs)

多环芳烃 (PAHs)
  • 文章类型: Journal Article
    作为流域尺度的系统研究,这项研究调查了空间分布,不同功能区表层沉积物中18种多环芳烃(PAHs)的来源解析和生态风险(河流,湖泊和水库)来自太湖流域。结果表明,河流沉积物中18PAHs(定义为∑18PAHs)的平均值(1277ng/g)远高于湖泊沉积物(243ng/g)和水库沉积物(134ng/g)。河流沉积物中多环芳烃的积累在很大程度上受到当地社会经济发展和能源消耗的影响。PAHs的正矩阵分解(PMF)和异构体比率分析表明,汽油和重油燃烧对沉积物中PAHs的相对贡献为15%,9%的石油泄漏,30%用于煤燃烧,23%为交通来源,成岩来源为23%。基于风险商(RQ)方法的生态风险评估表明,太湖流域沉积物遭受了中等程度的PAHs风险。
    As a systematic research at basin scale, this study investigated the spatial distribution, source apportionment and ecological risks of eighteen polycyclic aromatic hydrocarbons (PAHs) in surface sediments at different functional regions (rivers, lakes and reservoirs) from Taihu basin. Results showed that the mean values of 18 PAHs (defined as ∑18PAHs) in river sediments (1277 ng/g) was much higher than those observed in lake sediments (243 ng/g) and reservoir sediments (134 ng/g). The accumulation of PAHs in river sediments was largely impacted by the local social-economic development and energy consumption. The positive matrix factorization (PMF) and isomer ratios analysis of PAHs suggest that relative contributions to PAHs in sediments were 15% for gasoline and heavy oil combustion, 9% for oil spills, 30% for coal combustion, 23% for traffic source, and 23% for diagenetic source. Ecological risk assessment based upon risk quotient (RQ) method indicated that sediments at Taihu basin have suffered moderate risk of PAHs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Recently, the rapid growth in vehicle activity in rapidly urbanized areas has led to the discharge of large amounts of polycyclic aromatic hydrocarbons (PAHs) into roadside soils and these compounds have gradually accumulated in the soil, which poses a serious threat to national food security and public health. However, previous studies did not clearly investigate the seasonal differences in PAH pollution of roadside soil by different highways. Therefore, based on field investigations, this study collected 84 soil surface samples to compare the pollution characteristics of 16 PAHs in farmland soils located near different roads in different seasons in Guangzhou, China. The results showed that the concentration of Σ16PAHs in farmland soils in spring (with a mean value of 258.604 μg/kg) was much higher than that in autumn (with a mean value of 157.531 μg/kg). There are differences in the PAH compositions in spring (4 ring > 3 ring > 5 ring > 6 ring) and autumn (4 ring > 5 ring > 6 ring > 3 ring). The proportion of 4−6 ring PAHs was much higher than 2−3 ring PAHs in both seasons. The spatial differences were significant. The sampling areas with higher concentrations of 16 PAHs were Tanbu Town, Huadu District (TB), Shitan Town, Zengcheng District (ST), and Huashan Town, Huadu District (HS), while the lowest concentration was in Lanhe Town, Nansha District (LH). The results of the diagnostic ratios showed that the main source of soil PAHs consists of a mixed source from petroleum and biomass combustion. The results from the total pollution assessment method and Nemerow index method indicated that the pollution levels of PAHs in the farmland soils indicated weak contamination. Our study provides a scientific basis for the prevention and control of soil pollution in farmlands near highways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究的目的是评估长期接触多环芳烃(PAHs)的健康风险,海洋生物的生态毒理学风险,并确定其可能的来源。从布什尔市周围的15个旅游海滩站收集了表面沉积物生物测定样品,并使用高效液相色谱(HPLC)进行了分析。结果表明,∑PAH的浓度范围为193.5至725.5ngg-1,平均值为351.1±155.2ngg-1,可视为中度污染。将沉积物中PAH的实测水平与沉积物质量指南(SQG)进行了比较,表明海洋生物的低到中等生态毒理学风险。此外,采用平均ERM商(M-ERM-Q)和平均PEL商(M-PEL-Q),显示潜在的生物不良影响。使用终生癌症风险增量(ILCR)和毒性当量商(TEQcarc)对人类健康风险进行的初步评估表明,布什尔市旅游海滩某些站点中PAH污染的沉积物会引起潜在的致癌作用,尤其是对儿童而言。组成和诊断分析表明,PAHs起源于热原和岩原,不完全燃烧多环芳烃的比例较高。
    The aims of the present research were to evaluate the health risk of long-term exposure to polycyclic aromatic hydrocarbons (PAHs) concerning the human, ecotoxicological risk for marine biota, and identify their possible sources. Surface sediment bioassay samples were collected from 15 stations of tourist beaches surrounding Bushehr City and analyzed using high performance liquid chromatography (HPLC). The results indicated the concentrations of ∑PAH ranged from 193.5 to 725.5 ng g-1 with mean value of 351.1 ± 155.2 ng g-1, which could be considered as moderate level of pollution. Measured levels of PAH in sediments were compared with sediment quality guidelines (SQGs), indicating low to medium ecotoxicological risk on marine organisms. Moreover, mean ERM quotient (M-ERM-Q) and mean PEL quotient (M-PEL-Q) were implemented, demonstrating potentially biological adverse effects. A preliminary evaluation of human health risk using incremental lifetime cancer risk (ILCR) and toxic equivalent quotient (TEQcarc) indicated that PAH-contaminated sediment in some stations of touristic beaches of Bushehr City would induce potential carcinogenic effects especially for children. Composition and diagnostic analysis indicated that PAHs originated from both pyrogenic and petrogenic, with higher portion of incomplete combustion PAHs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Polycyclic aromatic hydrocarbons (PAHs), as persistent toxic substances (PTS), have been widely monitored in coastal environment, including seawater and sediment. However, scientific monitoring methods, like ecological risk assessment and integrated biomarker response, still need massive researches to verify their availabilities. This study was performed in March, May, August and October of 2018 at eight sites, Yellow River estuary (S1), Guangli Port (S2), Xiaying (S3), Laizhou (S4), Inner Bay (S5), Outer Bay (S6), Hongdao (S7) and Hongshiya (S8) of Shandong Peninsula, China. The contents of 16 priority PAHs in local seawater and sediment were determined, by which ecological risk assessment risk quotient (RQ) for seawater and sediment quality guidelines (SQGs) were calculated to characterize the PAHs pollution. Meanwhile, multiple biomarkers in the digestive gland of clam Ruditapes philippinarum were measured to represent different biological endpoints, including ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), sulfotransferase (SULT), superoxide dismutase (SOD) and lipid peroxidation (LPO), by which integrated biomarker response (IBR) was calculated to provide a comprehensive assessment of environmental quality. Taken together, these results revealed the heaviest pollution at S2 as both PAHs concentrations and biomarkers responses reflected, and supported the integrated biomarker response as a useful tool for marine environmental monitoring, through its integration with SQGs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Substances with (very) persistent, (very) bioaccumulative, and/or toxic properties (PBT/vPvB) are of environmental concern and are identified via hazard-based PBT-assessment approaches. The PBT-assessment of well-defined substances is optimized over the past decades, but is under development for substances of unknown or variable composition, complex reaction products or biological materials (UVCBs). Particularly, the large number of constituents and variable composition complicate the PBT-assessment of UVCBs. For petroleum UVCBs, the use of the hydrocarbon block method (HBM) is proposed. Within this method, groups of constituents with similar physicochemical properties and structure are treated as a single entity and are expected to have comparable environmental fate and hazard properties. So far, however, there is a lack of experience with the application of the HBM for PBT-assessment purposes. The aim of this study is to investigate the suitability of the HBM for the PBT-assessment of petroleum UVCBs by evaluating the group of alkylated three-ring polycyclic aromatic hydrocarbons (PAHs). The presented approach is based on experimental data and model predictions and followed the guidelines of the European Chemicals Agency. Because of a lack of relevant experimental data, relative trend analyses were applied. The results indicate that alkylated three-ring PAHs are more persistent, bioaccumulative, and toxic than the parent three-ring PAHs. As the parent three-ring PAHs are currently identified within Europe as PBT/vPvB substances, the alkylated three-ring PAHs could also be considered as PBT/vPvB. Accordingly, this case study provides the prospects for the application of the HBM for the PBT-assessment of UVCBs using trend analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Our previous study revealed PAHs\' wide occurrence in corals from multiple coral reef regions (CRRs) in the South China Sea. However, little is known about their occurrence, distribution, fate, and sources in the ambient environment of these CRRs. This study aimed to resolve these research gaps. The results showed ∑15PAHs (total concentrations of 15 US EPA priority controlled PAHs exclude naphthalene) in the atmosphere (gas-phase: 0.31-49.6 ng m-3; particle-phase: 2.6-649 pg m-3) were mainly influenced by air mass origins. Southwesterly wind caused higher ∑15PAHs than the southeasterly wind. The ∑15PAHs in seawater from the nearshore (462 ± 244 ng L-1) was higher than that from offshore Zhongsha Islands (80.5 ± 72.1 ng L-1) because of the effect of terrigenous pollution and ocean current. Source apportionment indicated that the mixed sources of spilled oil and combustion from neighboring countries were the main contributors to PAHs in these CRRs. The total deposition fluxes showed that PAHs tended to migrate from the atmosphere to seawater. Global warming may inhibit this process, but PAHs still have a migration pattern of atmosphere-ocean-corals, which will further increase the environmental pressure on coral reef ecology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The ever-increasing anthropogenic activities have adversely impacted coral reef ecosystems and their ecological functions. This calls for an urgent assessment of the health state of these valuable ecosystems to justify the need for mitigation and proper management efforts. In this contribution, we used multiple indicators to assess the impact of intense oil-related activities on coral reefs in two near-by impacted and non-impacted islands in the northwestern Persian Gulf. The efficacy of indices was assessed using estimations of the effect size (omega-squared), precision, and decision trees (Classification and Regression Tree (CART)). The results demonstrated that the combination of bioaccumulation of ƩPAH in coral tissues, the percent of live coral cover, and the Sediment Constituent (SEDCON) Index were the most robust proxies reflecting the influence of human activities on reef\'s health. Based on sedimentary PAH concentration, the CART classified most of the indicators into two classes consisting of those in impacted and those in non-impacted locations, further supporting the feasibility of the employed indices. The findings of this study provided a warning of degradation in coral reefs of the island subjected to PAH pollution. This encourages decision-makers to execute routine monitoring and mitigation practices to maintain healthy reefs in the study areas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    A suitable extraction protocol based on an liquid-liquid extraction with hexane/dimethyl sulfoxide and a GC/MS method were developed and validated to determine the concentration of six prohibited Polycyclic Aromatic Hydrocarbons (PAHs; benzo[a]pyrene; dibenz[a,h]anthracene; benz[a]anthracene; benzo[j]fluoranthene; benzo[k]fluoranthene; chrysene) in lipsticks commissioned by a cosmetic company to a manufacturer. The lipsticks were produced in four different colors. Analyses confirmed the presence of benz[a]anthracene and chrysene only in two colors in a concentration of 9.3-9.4 ng/g. The concentration of PAHs was 250 times lower than what is considered a toxic level on the basis of what reported in the litaraure and guidances for cosmetic ingredients; therefore we could assume that the risk for consumer health was negligeble.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    A combined assessment on the levels and distribution profiles of polycyclic aromatic hydrocarbons (PAHs) and trace elements in soils from Pyramiden (Central Spitsbergen, Svalbard Archipelago) is here reported. As previously stated, long-range atmospheric transport, coal deposits and previous mining extractions, as well as the stack emissions of two operative power plants at this settlement are considered as potential sources of pollution. Eight top-layer soil samples were collected and analysed for the 16 US EPA priority PAHs and for 15 trace elements (As, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sn, Tl, V and Zn) during late summer of 2014. The highest levels of PAHs and trace elements were found in sampling sites located near two power plants, and at downwind from these sites. The current PAH concentrations were even higher than typical threshold values. The determination of the pyrogenic molecular diagnostic ratios (MDRs) in most samples revealed that fossil fuel burning might be heavily contributing to the PAHs levels. Two different indices, the Pollution Load Index (PLI) and the Geoaccumulation Index (Igeo), were determined for assessing soil samples with respect to trace elements pollution. Samples collected close to the power plants were found to be slightly and moderately polluted with zinc (Zn) and mercury (Hg), respectively. The Spearman correlation showed significant correlations between the concentrations of 16 PAHs and some trace elements (Pb, V, Hg, Cu, Zn, Sn, Be) with the organic matter content, indicating that soil properties play a key role for pollutant retention in the Arctic soils. Furthermore, the correlations between ∑16 PAHs and some trace elements (e.g., Hg, Pb, Zn and Cu) suggest that the main source of contamination is probably pyrogenic, although the biogenic and petrogenic origin of PAHs should not be disregarded according to the local geology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    为了获得火源的历史变化,集成源分配方法,其中包括PAH成分,诊断比率(DR),Pb同位素比,和正矩阵分解(PMF)模型,被开发并应用于南海北部的沉积物。这些方法提供了能量结构变化的逐渐清晰的画面。空间上,Σ15PAH(11.3至95.5ng/g)和Pb(10.2至74.6μg/g)通常在近海表现出降低的浓度梯度;而台湾海峡南部附近的PAHs和Pb含量最高,这可能是由不同河流输入的积累引起的。污染物的历史记录紧随中国经济的发展,随着20世纪80年代和90年代Σ15PAH和Pb的快速增长,分别。1990年代中期以后,随着铅的急剧下降,中国逐步淘汰了含铅汽油。PAHs和Pb与岩心沉积物的TOC和粘土含量密切相关,没有观察到表面沉积物。高分子量PAH比例增加。然后定性地将煤和生物质燃烧确定为具有DRs的PAHs的主要来源。此外,1900年后,铅同位素比的放射性特征向较低的方向转变,揭示了工业来源的开始和日益重要。最后,通过三因素PMF模型实现了各种输入的更大分离和量化,这清楚地表明生物质燃烧,煤燃烧,车辆排放占40±20%,41±13%,和19±12%的PAHs通过核心。在2000年之前,生物质和煤炭燃烧是主要来源,而此后车辆排放的贡献猛增。这里集成的多方法通过逐步降低和交叉验证的角度来减少偏差,从而改善了源分配,可以类似地应用于其他水生系统。
    To obtain the historical changes of pyrogenic sources, integrated source apportionment methods, which include PAH compositions, diagnostic ratios (DRs), Pb isotopic ratios, and positive matrix factorization (PMF) model, were developed and applied in sediments of the northern South China Sea. These methods provided a gradually clear picture of energy structural change. Spatially, Σ15PAH (11.3 to 95.5ng/g) and Pb (10.2 to 74.6μg/g) generally exhibited decreasing concentration gradient offshore; while the highest levels of PAHs and Pb were observed near the southern Taiwan Strait, which may be induced by accumulation of different fluvial input. Historical records of pollutants followed closely with the economic development of China, with fast growth of Σ15PAH and Pb occurring since the 1980s and 1990s, respectively. The phasing-out of leaded gasoline in China was captured with a sharp decrease of Pb after the mid-1990s. PAHs and Pb correlated well with TOC and clay content for core sediments, which was not observed for surface sediments. There was an up-core increase of high molecular PAH proportions. Coal and biomass burning were then qualitatively identified as the major sources of PAHs with DRs. Furthermore, shift toward less radiogenic signatures of Pb isotopic ratios after 1900 revealed the start and growing importance of industrial sources. Finally, a greater separation and quantification of various input was achieved by a three-factor PMF model, which made it clear that biomass burning, coal combustion, and vehicle emissions accounted for 40±20%, 41±13%, and 19±12% of PAHs through the core. Biomass and coal combustion acted as major sources before 2000, while contributions from vehicle emission soared thereafter. The integrated multi-methodologies here improved the source apportionment by reducing biases with a step-down and cross-validation perspective, which could be similarly applied to other aquatic systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号