Nanog

Nanog
  • 文章类型: Journal Article
    Targeting cancer stem cell (CSC) subpopulation within the tumor remains an obstacle for specific therapy in head-and-neck squamous cell carcinoma (HNSCC). Few studies in the literature describe a panel of stem cell makers, however a distinct panel has not been put forth. This systematic review aims to enhance the knowledge of additional markers to accurately relate their expression to tumorigenesis, metastasis, and therapy resistance. Databases, including PubMed, Google Scholar, Ebsco, and Science Direct, were searched from 2010 to 2017 using various combinations of the following keywords: \"Stem cell markers in HNSCC\" and \"chemoresistance and radioresistence in HNSCC.\" Original experimental studies (both in vitro and in vivo) published in English considering stem cell markers in HNSCC, were considered and included. We excluded articles on tumors other than HNSCC, reviews, editorial letters, book chapters, opinions, and abstracts from the analyses. Forty-two articles were included, in which 13 types of stem cell markers were identified. The most commonly expressed CSC markers were CD44, aldehyde dehydrogenase, and CD133, which were responsible for tumorigenesis, self-renewal, and therapy resistance, whereas NANOG, SOX-2, and OCT-4 were involved in metastasis and invasion. Identification of an accurate panel of CSC markers is the need of the hour as nonspecificity of the current markers poses a problem. Further studies with a large sample size would help validate the role of these CSC markers in HNSCC. These CSC proteins can be developed as therapeutic targets for HNSCC therapy, making future treatment modality more specific and effective.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肺癌是全球癌症相关死亡的主要原因。由于疾病早期阶段的无症状过程以及缺乏针对人群的标准筛查程序,因此早期诊断肺癌仍然是一个挑战。如今,了解导致肺癌发生的机制对于开发新的诊断和治疗策略至关重要.最近,许多研究已经证明,癌症干细胞(CSCs)负责启动,programming,转移,复发,甚至肺癌患者对化疗和放疗的耐药性。多能性转录因子的表达负责干性特性。在这次审查中,我们总结了目前关于CSCs和多能性转录因子在肺癌发生中的作用的知识。
    Lung cancer is the leading cause of cancer-related mortality worldwide. Diagnosis of lung cancer in an early stage is still a challenge due to the asymptomatic course of early stages of the disease and the lack of a standard screening program for the population. Nowadays, learning about the mechanisms that lead to cancerogenesis in the lung is crucial for the development of new diagnostic and therapeutic strategies. Recently, many studies have proved that cancer stem cells (CSCs) are responsible for the initiation, progression, metastasis, recurrence, and even resistance of chemo- and radiotherapeutic treatment in patients with lung cancer. The expression of pluripotency transcription factors is responsible for stemness properties. In this review, we summarize the current knowledge on the role of CSCs and pluripotency transcription factors in lung carcinogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The homeobox domain transcription factor NANOG, a key regulator of embryonic development and cellular reprogramming, has been reported to be broadly expressed in human cancers. Functional studies have provided strong evidence that NANOG possesses protumorigenic attributes. In addition to promoting self-renewal and long-term proliferative potential of stem-like cancer cells, NANOG-mediated oncogenic reprogramming may underlie clinical manifestations of malignant disease. In this review, we examine the molecular origin, expression, biological activities, and mechanisms of action of NANOG in various malignancies. We also consider clinical implications such as correlations between NANOG expression and cancer prognosis and/or response to therapy. We surmise that NANOG potentiates the molecular circuitry of tumorigenesis, and thus may represent a novel therapeutic target or biomarker for the diagnosis, prognosis, and treatment outcome of cancer. Finally, we present critical pending questions relating NANOG to cancer stem cells and tumor development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Pluripotent embryonic stem cells and induced pluripotent stem cells hold great promise for future use in tissue replacement therapies due to their ability to self-renew indefinitely and to differentiate into all adult cell types. Harnessing this therapeutic potential efficiently requires a much deeper understanding of the molecular processes at work within the pluripotency network. The transcription factors Nanog, Oct4, and Sox2 reside at the core of this network, where they interact and regulate their own expression as well as that of numerous other pluripotency factors. Of these core factors, Nanog is critical for blocking the differentiation of pluripotent cells, and more importantly, for establishing the pluripotent ground state during somatic cell reprogramming. Both mouse and human Nanog are able to form dimers in vivo, allowing them to preferentially interact with certain factors and perform unique functions. Recent studies have identified an evolutionary functional conservation among vertebrate Nanog orthologs from chick, zebrafish, and the axolotl salamander, adding an additional layer of complexity to Nanog function. Here, we present a detailed overview of published work focusing on Nanog structure, function, dimerization, and regulation at the genetic and post-translational levels with regard to the establishment and maintenance of pluripotency. The full spectrum of Nanog function in pluripotent stem cells and in cancer is only beginning to be revealed. We therefore use this evidence to advocate for more comprehensive analysis of Nanog in the context of disease, development, and regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号