Nanog

Nanog
  • 文章类型: Journal Article
    先前的研究已经证明,源自使用F10的Nanog过表达(Nanog+F10)制备的间变性小鼠黑素瘤细胞系的细胞外囊泡(EV)抑制Nanog+F10的转移。这里,诱导的多能干(iPS)细胞系集中作为一个更多的间变性细胞系,可能产生具有更高转移抑制作用的电动汽车。在引入Nanog+F10细胞之前,将EV引入尾静脉9次。两周后,切除肝脏和肺,并对转移菌落进行定量.巨噬细胞的参与(侵袭抑制能力,吞噬活性)和细胞毒性T细胞(细胞毒性)使用J774.1和CTLL-2细胞系进行评估。在与转移抑制相关的每个项目中,iPSEV均显示与NanogF10EV相似的水平效果。EV中miRNA的差异表达分析和功能网络数据库分析揭示了显性调控miRNA。与转移抑制机制高度相关的候选hub基因被预测为六个基因,包括Trp53和Hif1a,对于Nanog+F10电动汽车和十个基因,包括Ins1和Kitl,适用于IPS电动汽车。关于机制,Nanog+F10电动汽车和iPS电动汽车非常不同。这表明当一起用作转移预防疫苗时的协同作用。
    Previous studies have demonstrated that extracellular vesicles (EVs) derived from an anaplastic mouse melanoma cell line made using Nanog overexpression of F10 (Nanog+F10) suppressed the metastasis of Nanog+F10. Here, an induced pluripotent stem (iPS) cell line was focused as a more anaplastic cell line, potentially producing EVs with higher metastasis-suppressive effects. The EVs were introduced into the tail vein nine times before introducing Nanog+F10 cells. Two weeks later, the liver and lung were resected and metastatic colonies were quantified. The involvement of macrophages (invasion inhibiting ability, phagocytic activity) and cytotoxic T cells (cytotoxicity) was evaluated using J774.1 and CTLL-2 cell lines. iPS EVs showed similar level effects to Nanog+F10 EVs in every item relevant to metastasis suppression. Differential expression analysis of miRNAs in EVs and functional network database analysis revealed that dominant regulatory miRNAs were predicted. The candidate hub genes most highly associated with the metastasis suppression mechanism were predicted as six genes, including Trp53 and Hif1a, for Nanog+F10 EVs and ten genes, including Ins1 and Kitl, for iPS EVs. Regarding the mechanism, Nanog+F10 EVs and iPS EVs were very different. This suggests synergistic effect when used together as metastasis preventive vaccine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: This study explored if human primary mesenchymal stem cells (MSCs), derived from two donors and cultivated in a medium made with intentionally treated water, would exhibit more growth and pluripotency than MSCs from the same source but grown in untreated (control) water.
    METHODS: To create the treated water, three Buddhist monks directed their attention toward commercially bottled water while holding the intention that the water would enhance the growth of MSCs. Under double-blind conditions, cell culture growth mediums were prepared with the treated and untreated water, which was in turn used to grow the primary MSCs. Primary cells obtained from two donors were designated as Cells #1 and Cells #2. The prediction was that treated water would result in increased cell proliferation, that more cells would enter the cell cycle growth phase, and that there would be increased expression of genes (NANOG, OCT4 and SOX2) associated with improved cell growth and decreased expression of genes (p16, p21, and p53) associated with a decline in cell growth. The improved growth hypothesis was directional, thus one-tailed p-values were used to evaluate the results.
    RESULTS: Proliferation averaged across Cells #1 and #2 showed overall increased growth in treated as compared to control water (p = 0.0008). Cells #1 and #2 considered separately had differences in the same direction but only Cells #2 showed a significant difference on day 6 (p = 0.01). For cell cycle, there was a significantly greater percentage of Cells #2 in the S interphase with treated vs. control water (p = 0.04). For the gene expression analysis, when considering the average across the two donor cells, only the NANOG gene expression was in the predicted direction (p = 0.01); by contrast, the p16 gene expression was significantly opposite to the predicted direction (p = 0.005, one-tailed, post-hoc). For Cells #1 considered separately, no differences were significant except for p16, which resulted in an effect opposite to the predicted outcome (p = 0.05). For Cells #2, three genes were significantly in the predicted directions: NANOG (p = 0.0008), OCT4 (p = 0.005), and P53 (p = 0.05); p16 was significantly opposite to the prediction (p = 0.001).
    CONCLUSIONS: Intentionally treated water appeared to have some biological effects on the growth, pluripotency and senescence of human MSCs. This was especially the case in one of the two donor cells tested, but the effects were not consistently in the predicted direction. As an exploratory study, caution is warranted in interpreting these outcomes, and adjustment for multiple testing would likely reduce some of the weaker effects to nonsignificant. But given the double-blind protocol, as well as several more significant outcomes in the predicted directions, further research is warranted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: Gestational trophoblastic disease (GTD) is a group of interrelated but distinct diseases and has a serious impact on the reproductive health of women. To analyze the expression of Nanog in GTD and to evaluate its potential to predict the development of gestational trophoblastic neoplasia (GTN).
    METHODS: The study included 41 normal first-trimester placentas matched by gestational age to 53 regressed-hydatidiform-moles (rHMs), 56 malignant-HMs (mHMs) and 17 choriocarcinomas (CCAs) and evaluated the Nanog expression by immunohistochemistry. The chi-square test, ANOVA, Fisher\'s exact test and logistic regression were performed to assess the Nanog expression and clinical prognostic factors in GTD.
    RESULTS: Compared to normal placenta levels, the Nanog expression was increased in GTD samples (p < .05). In HMs, Nanog expression was positively correlated with serum β-hCG levels,uterine size and theca-lutein cysts (p < .05). Compared with the low-risk metastatic group (Federation of Gynecology and Obstetrics (FIGO) score ≤ 6), the high-risk metastatic group (FIGO score >7) had higher Nanog expression (p = .030). Moreover, logistic regression analysis showed that the positive expression of Nanog had the highest risk of developing into GTN (OR = 4.764, p < .001).
    CONCLUSIONS: Nanog is an independent predictor of clinical outcomes. It can also be a reliable predictor for GTN development from GTD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    OBJECTIVE: Cancer stem cells (CSC) and epithelial-mesenchymal transition (EMT) pathways are crucial for cancer progression. However, synergistic interactions between CSC and EMT are not clear in non-small cell lung cancer (NSCLC). The objective of this study was to investigate CSC markers such as CD44, NANOG, and ALDH1 expression and its correlation with EMT markers in NSCLC patients. Its association with survival was also determined.
    METHODS: CD44, NANOG, and ALDH1 protein expression was evaluated in 267 resected NSCLC and its correlation with e-cadherin, β-catenin, p120 catenin, vimentin, SNAIL, and TWIST expressions was determined based on immunohistochemical and mRNA expression data from The Cancer Genome Atlas (TCGA) database. Survival analyses also were performed based on immunohistochemistry and mRNA expression data from Gene Expression Omnibus dataset.
    RESULTS: ALDH1 expression in lung adenocarcinoma was positively correlated with the epithelial-like phenotype, low vimentin and low TWIST in immunohistochemical and mRNA expression data. NANOG and ALDH1 expressions measured by immunohistochemical and mRNA expression profiling data of adenocarcinomas were associated with a favorable prognosis. ALDH1 was an independent favorable prognostic marker for overall survival or recurrence-free survival in adenocarcinoma (P = 0.026 and P = 0.033, respectively). The epithelial-like phenotype expressing P120-catenin and beta-catenin was associated with a favorable prognosis; however, the TWIST-expressing mesenchymal-like phenotype was correlated with an unfavorable prognosis.
    CONCLUSIONS: NANOG and ALDH1 protein or mRNA expression showed improved prognosis in adenocarcinoma alone. ALDH1 expression correlated with an epithelial-like phenotype.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    UNASSIGNED: Gingival overgrowth is a common side effect of medication with the immunosuppressant cyclosporine A (CsA). This study proposed to verify whether Nanog, an embryonic stem cell marker, contributes to gingival overgrowth stimulated with CsA in human gingival fibroblasts (HGFs).
    UNASSIGNED: The effect of CsA on HGFs was used to elucidate whether Nanog expression could be induced by CsA using quantitative real-time reverse transcription-polymerase chain reaction and Western blotting. Cell growth in CsA-treated HGFs with Nanog lentivirus-mediated short hairpin RNA interference knockdown was evaluated by tetrazolium bromide reduction assay.
    UNASSIGNED: CsA upregulated Nanog transcript in HGFs in a dose-dependent manner (P < 0.05). CsA was also shown to increase Nanog protein expression in HGFs in a dose-dependent manner (P < 0.05). In addition, downregulation of Nanog by lentiviral infection significantly inhibited CsA-stimulated cell growth in HGFs (P < 0.05).
    UNASSIGNED: CsA upregulated Nanog expression and cell growth in HGFs, while silencing Nanog effectively reversed these phenomena. Nanog may act as a major switch in the pathogenesis of CsA-induced gingival overgrowth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cancer stem cells have been identified in primary tumors, patient derived xenografts, and established cancer cell lines. The development of reporters has enabled investigators to rapidly enrich for these cells and more importantly track these cells in real time. Here we describe the current state of the reporter field and their use and limitations in multiple cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Recent studies suggest that the regulatory networks controlling the functions of stem cells during development may be abnormally active in human cancers. An embryonic stem cell (ESC) gene signature was found to correlate with a more undifferentiated phenotype of several human cancer types including gliomas, and associated with poor prognosis in breast cancer. In the present study, we used tissue microarrays of 80 low-grade (WHO Grade II) and 98 high-grade human gliomas (WHO Grades III and IV) to investigate the presence of the ESC-related proteins Nanog, Klf4, Oct4, Sox2 and c-Myc by immunohistochemistry. While similar patterns of co-expressed proteins between low- and high-grade gliomas were present, we found up-regulated protein levels of Nanog, Klf4, Oct4 and Sox2 in high-grade gliomas. Survival analysis by Kaplan-Meier analysis revealed a significant shorter survival in the subgroups of low-grade astrocytomas (n = 42) with high levels of Nanog protein (p = 0.0067) and of Klf4 protein (p = 0.0368), in high-grade astrocytomas (n = 85) with high levels of Nanog (p = 0.0042), Klf4 (p = 0.0447), and c-Myc (p = 0.0078) and in glioblastomas only (n = 71) with high levels of Nanog (p = 0.0422) and of c-Myc (p = 0.0256). In the multivariate model, Nanog was identified as an independent prognostic factor in the subgroups of low-grade astrocytomas (p = 0.0039), high-grade astrocytomas (p = 0.0124) and glioblastomas only (p = 0.0544), together with established clinical variables in these tumors. These findings provide further evidence for the joint regulatory pathways of ESC-related proteins in gliomas and identify Nanog as one of the key players in determining clinical outcome of human astrocytomas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号