Energy homeostasis

能量稳态
  • 文章类型: Journal Article
    食物摄入的协调,储能,和支出涉及下丘脑神经元和包括胰岛在内的外周组织之间的复杂相互作用,脂肪细胞,肌肉,还有肝脏.先前的研究表明,转录因子Alx3的缺乏会改变胰岛依赖性葡萄糖稳态。在这项研究中,我们对Alx3缺乏症的代谢改变进行了全面评估。我们报告说,缺乏Alx3的小鼠表现出减少的食物摄入量,而体重没有变化,随着能量消耗的减少和呼吸交换率的改变。磁共振成像显示肥胖增加,肌肉质量减少,这与运动和交感神经支配的标志物有关。相比之下,高脂肪饮食中缺乏Alx3的小鼠表现出减轻的体重增加和改善的胰岛素敏感性,与对照小鼠相比。基因表达分析显示脂肪生成和脂肪分解基因谱改变。在野生型小鼠中,Alx3在下丘脑弓状核神经元中表达,但不是在主要的外周代谢器官。功能扩散加权磁共振成像揭示了Alx3缺陷小鼠弓状核对禁食的下丘脑反应。此外,下丘脑原黑皮质素和黑皮质素3受体mRNA表达的改变表明进食行为的调节受损。这项研究强调了Alx3在控制食物摄入方面的关键作用,能量稳态,和代谢营养分配,从而影响身体质量组成。
    The coordination of food intake, energy storage, and expenditure involves complex interactions between hypothalamic neurons and peripheral tissues including pancreatic islets, adipocytes, muscle, and liver. Previous research shows that deficiency of the transcription factor Alx3 alters pancreatic islet-dependent glucose homeostasis. In this study we carried out a comprehensive assessment of metabolic alterations in Alx3 deficiency. We report that Alx3-deficient mice exhibit decreased food intake without changes in body weight, along with reduced energy expenditure and altered respiratory exchange ratio. Magnetic resonance imaging reveals increased adiposity and decreased muscle mass, which was associated with markers of motor and sympathetic denervation. By contrast, Alx3-deficient mice on a high-fat diet show attenuated weight gain and improved insulin sensitivity, compared to control mice. Gene expression analysis demonstrates altered lipogenic and lipolytic gene profiles. In wild type mice Alx3 is expressed in hypothalamic arcuate nucleus neurons, but not in major peripheral metabolic organs. Functional diffusion-weighted magnetic resonance imaging reveals selective hypothalamic responses to fasting in the arcuate nucleus of Alx3-deficient mice. Additionally, altered expression of proopiomelanocortin and melanocortin-3 receptor mRNA in the hypothalamus suggests impaired regulation of feeding behavior. This study highlights the crucial role for Alx3 in governing food intake, energy homeostasis, and metabolic nutrient partitioning, thereby influencing body mass composition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脂肪组织可以募集分解代谢脂肪细胞,利用化学能散热。此过程通过解偶联蛋白1(UCP1)的解偶联呼吸或利用ATP依赖性无效循环(FC)进行。然而,目前尚不清楚这些途径是如何共存的,因为这两个过程都依赖于线粒体膜电位.利用单核RNA测序去卷积小鼠和人类皮下脂肪组织的异质性,我们确定了至少2个不同的米色脂肪细胞亚群:FC-脂肪细胞和UCP1-米色脂肪细胞。重要的是,我们证明FC-脂肪细胞亚群具有高度代谢活性,并利用FC来耗散能量,因此有助于独立于Ucp1的产热。此外,FC-脂肪细胞是全身能量稳态的重要驱动因素,并与人类的葡萄糖代谢和肥胖抵抗有关。一起来看,我们的发现确定了一个非经典的产热脂肪细胞亚群,这可能是哺乳动物能量稳态的重要调节剂。
    Adipose tissue can recruit catabolic adipocytes that utilize chemical energy to dissipate heat. This process occurs either by uncoupled respiration through uncoupling protein 1 (UCP1) or by utilizing ATP-dependent futile cycles (FCs). However, it remains unclear how these pathways coexist since both processes rely on the mitochondrial membrane potential. Utilizing single-nucleus RNA sequencing to deconvolute the heterogeneity of subcutaneous adipose tissue in mice and humans, we identify at least 2 distinct subpopulations of beige adipocytes: FC-adipocytes and UCP1-beige adipocytes. Importantly, we demonstrate that the FC-adipocyte subpopulation is highly metabolically active and utilizes FCs to dissipate energy, thus contributing to thermogenesis independent of Ucp1. Furthermore, FC-adipocytes are important drivers of systemic energy homeostasis and linked to glucose metabolism and obesity resistance in humans. Taken together, our findings identify a noncanonical thermogenic adipocyte subpopulation, which could be an important regulator of energy homeostasis in mammals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂通过抑制肾脏葡萄糖重吸收来调节2型糖尿病(T2DM)患者的血浆葡萄糖水平。这项研究调查了empagliflozin(EMPA)的影响,SGLT2抑制剂,下丘脑能量调节。为了直接研究SGLT2抑制剂在下丘脑中的作用,我们通过侧脑室内(i.c.v.)注射到鼠心室给药EMPA。在牙齿将静脉导管固定到头骨上之后,在接受载体或EMPA(50nM/2μL)注射之前,给予小鼠5天以恢复。在高脂饮食(HFD)诱导的肥胖模型中,我们测定了下丘脑中刺鼠相关肽(AgRP)和乌黑皮质素原(POMC)的基因表达水平.此外,我们评估了FoxO1的表达,调节下丘脑细胞系中的AgRP和POMC基因转录。我们发现EMPA直接影响POMC和AgRP的内源性mRNA的表达,这对能量稳态至关重要,并在高脂饮食诱导的肥胖小鼠中调节其转录。此外,EMPA影响FoxO1的表达,FoxO1是葡萄糖稳态的关键转录调节因子,从而调控POMC和AgRP的转录活性。这些结果表明,EMPA显着影响下丘脑能量稳态,强调其作为肥胖和T2DM管理调节者的潜力。
    Sodium-glucose cotransporter 2 (SGLT2) inhibitors regulate plasma glucose levels in patients with type 2 diabetes mellitus (T2DM) by inhibiting renal glucose reabsorption. This study investigated the impact of empagliflozin (EMPA), an SGLT2 inhibitor, on hypothalamic energy regulation. To directly investigate the role of SGLT2 inhibitors in the hypothalamus, we administered EMPA through intracerebroventricular (i.c.v.) injections into the murine ventricles. After dental cementing the i.c.v. cannula onto the skull, the mice were given 5 days to recover before receiving vehicle or EMPA (50 nM/2 μL) injections. In a high-fat diet (HFD)-induced obesity model, we determined the gene expression levels of agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) in the hypothalamus. Additionally, we assessed FoxO1 expression, which regulates AgRP and POMC gene transcription in hypothalamic cell lines. We found that EMPA directly influenced the expression of endogenous mRNA of POMC and AgRP, which are critical for energy homeostasis, and modulated their transcription in high-fat diet-induced obese mice. Additionally, EMPA affected the expression of FoxO1, a key transcriptional regulator of glucose homeostasis, thereby regulating the transcriptional activity of POMC and AgRP. These results indicate that EMPA significantly influences hypothalamic energy homeostasis, highlighting its potential as a regulator in obesity and T2DM management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    材料-微生物界面在可持续和高效的化学能转化方面提供了有希望的未来,然而,这些人工界面对微生物代谢的影响仍不清楚。这里,我们进行了详细的蛋白质组学和代谢组学分析,以研究光催化材料-微生物界面诱导的微生物代谢规律,特别是细胞内的氧化还原和能量稳态,这对维持细胞活动至关重要。首先,我们了解到,这些材料在扰乱微生物代谢和诱导独特的生物途径方面具有更重的重量,就像金属抵抗系统的表达,而不是光刺激。此外,我们观察到,材料-微生物界面可以维持微妙的氧化还原平衡和微生物细胞的能量状态,因为细胞内的氧化还原辅因子和能量货币显示出稳定的水平作为自然接种的微生物。这些观察结果确保了使用人造材料-微生物界面激发微生物活动的可能性,以用于各种应用,并且还为材料-微生物杂种的未来设计提供了指导,以保护微生物活动。
    Material-microbial interfaces offer a promising future in sustainable and efficient chemical-energy conversions, yet the impacts of these artificial interfaces on microbial metabolisms remain unclear. Here, we conducted detailed proteomic and metabolomic analyses to study the regulations of microbial metabolism induced by the photocatalytic material-microbial interfaces, especially the intracellular redox and energy homeostasis, which are vital for sustaining cell activity. First, we learned that the materials have a heavier weight in perturbing microbial metabolism and inducing distinctive biological pathways, like the expression of the metal-resisting system, than light stimulations. Furthermore, we observed that the materials-microbe interfaces can maintain the delicate redox balance and the energetic status of the microbial cells since the intracellular redox cofactors and energy currencies show stable levels as naturally inoculated microbes. These observations ensure the possibility of energizing microbial activities with artificial materials-microbe interfaces for diverse applications and also provide guides for future designs of materials-microbe hybrids to guard microbial activities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当前免疫学中的一个关键问题是先天免疫系统如何产生高水平的特异性。我们先前在秀丽隐杆线虫中的研究表明,NMUR-1是一种神经元G蛋白偶联受体,与神经肽神经蛋白U(NMU)的哺乳动物受体同源,调节对不同细菌病原体的不同先天免疫反应。这里,通过使用定量蛋白质组学和功能测定,我们发现NMUR-1调节F1FOATP合酶和ATP的产生,以响应病原体感染,并且这种调节有助于NMUR-1介导的先天免疫特异性。我们进一步证明,ATP的生物合成及其对防御的贡献受NMUR-1配体CAPA-1及其表达神经元ASG的神经控制。这些发现表明,NMUR-1神经信号通过控制能量稳态作为防御病原体的一部分来调节先天免疫的特异性。我们的研究提供了对NMU信号在整个动物门免疫中的新兴作用的机制见解。
    A key question in current immunology is how the innate immune system generates high levels of specificity. Our previous study in Caenorhabditis elegans revealed that NMUR-1, a neuronal G protein-coupled receptor homologous to mammalian receptors for the neuropeptide neuromedin U (NMU), regulates distinct innate immune responses to different bacterial pathogens. Here, by using quantitative proteomics and functional assays, we discovered that NMUR-1 regulates F1FO ATP synthase and ATP production in response to pathogen infection, and that such regulation contributes to NMUR-1-mediated specificity of innate immunity. We further demonstrated that ATP biosynthesis and its contribution to defense is neurally controlled by the NMUR-1 ligand CAPA-1 and its expressing neurons ASG. These findings indicate that NMUR-1 neural signaling regulates the specificity of innate immunity by controlling energy homeostasis as part of defense against pathogens. Our study provides mechanistic insights into the emerging roles of NMU signaling in immunity across animal phyla.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖的口服检测依赖于两种类型的受体系统。第一个是G蛋白偶联受体TAS1R2/TAS1R3。激活时,这个受体触发了一个下游的信号级联反应,磷脂酶Cβ2(PLCβ2),和瞬时受体电位通道M5(TRPM5)。第二种类型的受体是葡萄糖转运蛋白。当葡萄糖通过这种转运蛋白进入细胞时,代谢产生ATP。这种ATP抑制KATP通道的开放,导致细胞去极化。除了这些受体系统,对甜味敏感的味觉细胞具有基于身体内部和外部状态调节其对甜味物质的敏感性的机制。甜味受体不限于口腔;它们也存在于口腔外器官,如胃肠道,胰腺,和大脑。这些口外甜味受体参与各种功能,包括葡萄糖吸收,胰岛素释放,糖偏好,和食物摄入,有助于维持能量稳态。此外,甜味受体可能在某些器官如气管和骨骼中具有独特的作用。这篇综述总结了过去和最近对甜味受体系统的研究,探索口腔和口外器官中甜味(糖)检测的分子机制和生理功能。
    The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:针对葡萄糖和氧化代谢的双重干预在癌症治疗中越来越受到重视。索拉非尼(S)和二甲双胍(M),肝癌的两个黄金标准,以其线粒体抑制能力而闻名。禁食,葡萄糖限制策略,也正在成为化疗的辅助药物。在这里,我们探讨了营养限制联合索拉非尼:二甲双胍(NR-S:M)的抗癌反应。
    结果:我们的数据表明,独立于肝癌的侵袭性,禁食协同增强S:M联合治疗的抗增殖作用。通过检查线粒体和糖酵解活性来确定代谢和细胞可塑性,细胞周期调制,细胞凋亡的激活,以及关键信号和代谢酶的调节。在NR-S:M条件下,发现早期凋亡事件和促凋亡Bcl-xS/Bcl-xL比值增加.NR-S:M诱导细胞亚G1期的最高保留,与来自细胞凋亡的DNA片段的存在一致。线粒体功能,线粒体ATP相关呼吸,最大呼吸和备用呼吸能力,在NR-S:M条件下都被发现钝化。基础糖酵解,糖酵解储备,和糖酵解能力,连同糖原(PKM)的表达,糖异生(PCK1和G6PC3),和糖原分解酶(PYGL,PGM1和G6PC3),也受到NR-S:M的负面影响最后,TMT-蛋白质组学方法证实了肝癌代谢重编程与分子途径激活的同步,以驱动能量崩溃和细胞死亡的静止状态。
    结论:总而言之,我们表明,基于能量的综合疗法NR-S:M钝化细胞,肝癌的代谢和分子可塑性。尽管本研究的体外设计,它为这种肿瘤病理提供了一个值得探索的有前途的治疗工具。
    OBJECTIVE: Dual-Interventions targeting glucose and oxidative metabolism are receiving increasing attention in cancer therapy. Sorafenib (S) and Metformin (M), two gold-standards in liver cancer, are known for their mitochondrial inhibitory capacity. Fasting, a glucose-limiting strategy, is also emerging as chemotherapy adjuvant. Herein, we explore the anti-carcinogenic response of nutrient restriction in combination with sorafenib:metformin (NR-S:M).
    RESULTS: Our data demonstrates that, independently of liver cancer aggressiveness, fasting synergistically boosts the anti-proliferative effects of S:M co-treatment. Metabolic and Cellular plasticity was determined by the examination of mitochondrial and glycolytic activity, cell cycle modulation, activation of cellular apoptosis, and regulation of key signaling and metabolic enzymes. Under NR-S:M conditions, early apoptotic events and the pro-apoptotic Bcl-xS/Bcl-xL ratio were found increased. NR-S:M induced the highest retention in cellular SubG1 phase, consistent with the presence of DNA fragments from cellular apoptosis. Mitochondrial functionality, Mitochondrial ATP-linked respiration, Maximal respiration and Spare respiratory capacity, were all found blunted under NR-S:M conditions. Basal Glycolysis, Glycolytic reserve, and glycolytic capacity, together with the expression of glycogenic (PKM), gluconeogenic (PCK1 and G6PC3), and glycogenolytic enzymes (PYGL, PGM1, and G6PC3), were also negatively impacted by NR-S:M. Lastly, a TMT-proteomic approach corroborated the synchronization of liver cancer metabolic reprogramming with the activation of molecular pathways to drive a quiescent-like status of energetic-collapse and cellular death.
    CONCLUSIONS: Altogether, we show that the energy-based polytherapy NR-S:M blunts cellular, metabolic and molecular plasticity of liver cancer. Notwithstanding the in vitro design of this study, it holds a promising therapeutic tool worthy of exploration for this tumor pathology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    花青素,在各种色素植物中作为次生代谢产物发现,代表一类以其生物活性特性而闻名的膳食多酚,证明对几种慢性疾病的健康促进作用。其中,花色素苷-3-O-葡萄糖苷(C3G)是最常见的花色素苷类型之一。消费时,C3G经历口腔上皮细胞的I期和II期代谢,在胃上皮的吸收,和肠道转化(第二阶段和微生物代谢),有限的量进入血液。肥胖,以体内脂肪积累过多为特征,是与残疾风险增加相关的全球健康问题,疾病,和死亡率。这篇全面的综述探讨了C3G在胃肠道内的生物降解和吸收动力学。它仔细检查了最新的研究结果,从体外和体内模型中提取,提供证据强调C3G的生物活性。值得注意的是,C3G在对抗肥胖方面表现出显著的功效,通过调节脂质代谢,特别是减少脂质合成,增加脂肪酸氧化,减少脂质积累。此外,C3G通过增加能量消耗来增强能量稳态,促进棕色脂肪组织的活性,并刺激线粒体生物发生。此外,C3G显示出管理各种普遍肥胖相关疾病的潜力。这些包括通过抑制活性氧(ROS)产生的心血管疾病(CVD)和高血压,增强内源性抗氧化酶水平,和抑制核因子-κB(NF-κB)信号通路,并通过降低肺动脉厚度和收缩压来行使其心脏保护和血管作用,从而增强血管舒张和血管生成。2型糖尿病(T2DM)和胰岛素抵抗(IR)也通过AMPK途径激活减少糖异生来管理,促进自噬,保护胰腺β细胞免受氧化应激和增强葡萄糖刺激的胰岛素分泌。此外,C3G通过上调GLUT-1和GLUT-4的表达和调节PI3K/Akt途径来改善胰岛素敏感性。C3G通过抑制NF-κB途径表现出抗炎特性,减少促炎细胞因子,并将巨噬细胞极化从促炎M1表型转变为抗炎M2表型。C3G通过增强抗氧化酶的表达显示抗氧化作用,减少ROS的产生,并激活Nrf2/AMPK信号通路。此外,这些机制还有助于减轻炎症性肠病和通过减少Firmicutes和增加拟杆菌丰度来调节肠道微生物群,恢复结肠长度,并降低炎症细胞因子的水平。C3G的治疗潜力超出了代谢紊乱;它也被发现在管理特定癌症类型和神经退行性疾病方面有效。这项研究的发现可以为将来寻求通过使用天然存在的生物活性化合物来改善人类健康的研究提供重要参考。
    Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G\'s bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:从槟榔中提取的槟榔多酚(AP),已经证明了其抗疲劳作用的潜力。然而,迄今为止,AP抗疲劳特性的潜在机制尚未完全阐明.以前的研究主要集中在单一方面,如抗氧化和抗炎,但缺乏全面的多维度分析。
    目的:探讨AP抗疲劳作用的潜在机制。
    方法:在本研究中,我们开发了一个慢性睡眠剥夺导致的疲劳模型,血液学,生化指标评价AP抗疲劳疗效。此外,采用多组学方法从微生物组的角度揭示了AP的抗疲劳机制,代谢组,和蛋白质组。
    结果:生理学的检测,血液学和生化指标表明,AP明显减轻了睡眠剥夺引起的小鼠疲劳状态。16SrRNA测序显示AP促进了益生菌的丰度(Odoribacter,Dubosiella,Marvinbryantia,和Eubacterium)和抑制有害细菌(Ruminococus)。另一方面,发现AP可以调节结肠蛋白的表达,例如三磷酸腺苷(ATP)合成和线粒体功能相关蛋白的增加,包括ATP5A1,ATP5O,ATP5L,ATP5H,NDUFA,NDUFB,NDUFS,和NDUFV。血清代谢组学分析显示,AP上调抗疲劳氨基酸的水平,比如牛磺酸,亮氨酸,精氨酸谷氨酰胺,赖氨酸,还有l-脯氨酸.肝蛋白表达水平,特别是三羧酸(TCA)循环(CS,SDHB,MDH2和DLST)和氧化还原相关蛋白(SOD1,SOD2,GPX4和PRDX3),通过AP管理显着恢复。Spearman相关分析揭示了微生物组之间的强相关性,代谢组和蛋白质组,提示AP的抗疲劳作用归因于通过肠-肝轴的能量稳态和氧化还原平衡。
    结论:AP通过调节肠道菌群增加结肠ATP的产生并改善线粒体功能,并进一步上调血液中抗疲劳氨基酸水平。基于肠-肝轴,AP上调肝脏三羧酸循环和氧化还原酶相关蛋白表达,调节能量稳态和氧化还原平衡,并最终发挥抗疲劳作用。这项研究提供了对AP抗疲劳机制的见解,强调其作为治疗剂的潜力。
    BACKGROUND: Areca nut polyphenols (AP) that extracted from areca nut, have been demonstrated for their potential of anti-fatigue effects. However, the underlying mechanisms for the anti-fatigue properties of AP has not been fully elucidated to date. Previous studies have predominantly concentrated on single aspects, such as antioxidation and anti-inflammation, yet have lacked comprehensive multi-dimensional analyses.
    OBJECTIVE: To explore the underlying mechanism of AP in exerting anti-fatigue effects.
    METHODS: In this study, we developed a chronic sleep deprivation-induced fatigue model and used physiological, hematological, and biochemical indicators to evaluate the anti- fatigue efficacy of AP. Additionally, a multi-omics approach was employed to reveal the anti-fatigue mechanisms of AP from the perspective of microbiome, metabolome, and proteome.
    RESULTS: The detection of physiology, hematology and biochemistry index indicated that AP markedly alleviate mice fatigue state induced by sleep deprivation. The 16S rRNA sequencing showed the AP promoted the abundance of probiotics (Odoribacter, Dubosiella, Marvinbryantia, and Eubacterium) and suppressed harmful bacteria (Ruminococcus). On the other hand, AP was found to regulate the expression of colonic proteins, such as increases of adenosine triphosphate (ATP) synthesis and mitochondrial function related proteins, including ATP5A1, ATP5O, ATP5L, ATP5H, NDUFA, NDUFB, NDUFS, and NDUFV. Serum metabolomic analysis revealed AP upregulated the levels of anti-fatigue amino acids, such as taurine, leucine, arginine, glutamine, lysine, and l-proline. Hepatic proteins express levels, especially tricarboxylic acid (TCA) cycle (CS, SDHB, MDH2, and DLST) and redox-related proteins (SOD1, SOD2, GPX4, and PRDX3), were significantly recovered by AP administration. Spearman correlation analysis uncovered the strong correlation between microbiome, metabolome and proteome, suggesting the anti-fatigue effects of AP is attribute to the energy homeostasis and redox balance through gut-liver axis.
    CONCLUSIONS: AP increased colonic ATP production and improve mitochondrial function by regulating gut microbiota, and further upregulated anti-fatigue amino acid levels in the blood. Based on the gut-liver axis, AP upregulated the hepatic tricarboxylic acid cycle and oxidoreductase-related protein expression, regulating energy homeostasis and redox balance, and ultimately exerting anti-fatigue effects. This study provides insights into the anti-fatigue mechanisms of AP, highlighting its potential as a therapeutic agent.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管进行了一个世纪的研究,但我们对肥胖病理生理学的理解充其量仍然不完整。在此期间,两种不同的观点有助于形成对这种疾病病因的思考。目前流行的观点认为,过度的脂肪积累的结果,因为能量摄入超过能量消耗,过度的食物消费是不平衡的主要原因。另一个观点将肥胖的起始原因归因于内在代谢缺陷,这些缺陷将燃料分配从动员和氧化途径转移到合成和储存途径。由此产生的燃料氧化的减少和脂肪组织中的能量捕获驱动能量摄入的补偿性增加,在某些条件下,支出减少。尽管有其谱系,但这种肥胖发病机理的理论历来受到的关注相对较少。这里,我们提出了燃料分配理论的最新综合表述,集中在过去80年中从主要的肥胖动物模型中收集的证据,这些证据表明燃料通量从氧化到储存和积累多余的体内脂肪,其能量摄入量等于或甚至低于瘦肉动物。目的是为当前有关肥胖病因的讨论提供信息,帮助为设计更有效的肥胖研究方法奠定新的基础,治疗和预防。
    Our understanding of the pathophysiology of obesity remains at best incomplete despite a century of research. During this time, two alternative perspectives have helped shape thinking about the etiology of the disorder. The currently prevailing view holds that excessive fat accumulation results because energy intake exceeds energy expenditure, with excessive food consumption being the primary cause of the imbalance. The other perspective attributes the initiating cause of obesity to intrinsic metabolic defects that shift fuel partitioning from pathways for mobilization and oxidation to those for synthesis and storage. The resulting reduction in fuel oxidation and trapping of energy in adipose tissue drives a compensatory increase in energy intake and, under some conditions, a decrease in expenditure. This theory of obesity pathogenesis has historically garnered relatively less attention despite its pedigree. Here, we present an updated comprehensive formulation of the fuel partitioning theory, focused on evidence gathered over the last 80 years from major animal models of obesity showing a redirection of fuel fluxes from oxidation to storage and accumulation of excess body fat with energy intake equal to or even less than that of lean animals. The aim is to inform current discussions about the etiology of obesity and by so doing, help lay new foundations for the design of more efficacious approaches to obesity research, treatment and prevention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号