Energy homeostasis

能量稳态
  • 文章类型: Journal Article
    花青素,在各种色素植物中作为次生代谢产物发现,代表一类以其生物活性特性而闻名的膳食多酚,证明对几种慢性疾病的健康促进作用。其中,花色素苷-3-O-葡萄糖苷(C3G)是最常见的花色素苷类型之一。消费时,C3G经历口腔上皮细胞的I期和II期代谢,在胃上皮的吸收,和肠道转化(第二阶段和微生物代谢),有限的量进入血液。肥胖,以体内脂肪积累过多为特征,是与残疾风险增加相关的全球健康问题,疾病,和死亡率。这篇全面的综述探讨了C3G在胃肠道内的生物降解和吸收动力学。它仔细检查了最新的研究结果,从体外和体内模型中提取,提供证据强调C3G的生物活性。值得注意的是,C3G在对抗肥胖方面表现出显著的功效,通过调节脂质代谢,特别是减少脂质合成,增加脂肪酸氧化,减少脂质积累。此外,C3G通过增加能量消耗来增强能量稳态,促进棕色脂肪组织的活性,并刺激线粒体生物发生。此外,C3G显示出管理各种普遍肥胖相关疾病的潜力。这些包括通过抑制活性氧(ROS)产生的心血管疾病(CVD)和高血压,增强内源性抗氧化酶水平,和抑制核因子-κB(NF-κB)信号通路,并通过降低肺动脉厚度和收缩压来行使其心脏保护和血管作用,从而增强血管舒张和血管生成。2型糖尿病(T2DM)和胰岛素抵抗(IR)也通过AMPK途径激活减少糖异生来管理,促进自噬,保护胰腺β细胞免受氧化应激和增强葡萄糖刺激的胰岛素分泌。此外,C3G通过上调GLUT-1和GLUT-4的表达和调节PI3K/Akt途径来改善胰岛素敏感性。C3G通过抑制NF-κB途径表现出抗炎特性,减少促炎细胞因子,并将巨噬细胞极化从促炎M1表型转变为抗炎M2表型。C3G通过增强抗氧化酶的表达显示抗氧化作用,减少ROS的产生,并激活Nrf2/AMPK信号通路。此外,这些机制还有助于减轻炎症性肠病和通过减少Firmicutes和增加拟杆菌丰度来调节肠道微生物群,恢复结肠长度,并降低炎症细胞因子的水平。C3G的治疗潜力超出了代谢紊乱;它也被发现在管理特定癌症类型和神经退行性疾病方面有效。这项研究的发现可以为将来寻求通过使用天然存在的生物活性化合物来改善人类健康的研究提供重要参考。
    Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G\'s bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铬补充剂因其潜在的健康益处而受到广泛认可。特别是在增强胰岛素敏感性和控制葡萄糖代谢方面。然而,最近的研究已经开始阐明铬的其他作用机制,扩大我们的理解,超越其对胰岛素信号通路的经典影响。线粒体ATP合酶的β亚基被认为是Cr(III)作用的新位点,影响除胰岛素信号外的生理效应。补充铬的生理效应已被广泛研究,特别是其在抗氧化功效和葡萄糖代谢中的作用。然而,最近的进展促使人们重新评估铬在胰岛素信号通路之外的作用机制。讨论了线粒体ATP合酶的β亚基作为铬作用的潜在靶标的发现,强调其在细胞能量产生和代谢调节中的关键作用。对早期进行的相关研究的细致分析可以揭示补充铬与线粒体ATP合酶之间的关系。这篇综述根据主要调查对研究进行了分类,包括肌肉蛋白质合成等领域,葡萄糖和脂质代谢,和抗氧化性能。仔细研究这些研究的结果,以区分与新假设一致的模式。这种探索的核心是强调超出胰岛素信号通路的铬的生理效应的研究。评估铬影响细胞能量代谢和整体代谢平衡的各种独立作用机制变得更加重要。总之,这篇综述是理解铬补充的范式转变,为利用铬和线粒体ATP合酶之间复杂相互作用的未来研究铺平了道路。
    Chromium supplementation has been notably recognized for its potential health benefits, especially in enhancing insulin sensitivity and managing glucose metabolism. However, recent studies have begun to shed light on additional mechanisms of action for chromium, expanding our understanding beyond its classical effects on the insulin-signaling pathway. The beta subunit of mitochondrial ATP synthase is considered a novel site for Cr(III) action, influencing physiological effects apart from insulin signaling. The physiological effects of chromium supplementation have been extensively studied, particularly in its role in anti-oxidative efficacy and glucose metabolism. However, recent advancements have prompted a re-evaluation of chromium\'s mechanisms of action beyond the insulin signaling pathway. The discovery of the beta subunit of mitochondrial ATP synthase as a potential target for chromium action is discussed, emphasizing its crucial role in cellular energy production and metabolic regulation. A meticulous analysis of relevant studies that were earlier carried out could shed light on the relationship between chromium supplementation and mitochondrial ATP synthase. This review categorizes studies based on their primary investigations, encompassing areas such as muscle protein synthesis, glucose and lipid metabolism, and antioxidant properties. Findings from these studies are scrutinized to distinguish patterns aligning with the new hypothesis. Central to this exploration is the presentation of studies highlighting the physiological effects of chromium that extend beyond the insulin signaling pathway. Evaluating the various independent mechanisms of action that chromium impacts cellular energy metabolism and overall metabolic balance has become more important. In conclusion, this review is a paradigm shift in understanding chromium supplementation, paving the way for future investigations that leverage the intricate interplay between chromium and mitochondrial ATP synthase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Systematic Review
    使用非和低热量的甜味剂(NCS和LCS)作为防止超重和肥胖的手段引起了激烈的争论,因为NCS和LCS都被认为对能量稳态有负面影响。本系统综述旨在评估NCS和LCS对空腹和餐后底物氧化的影响,能量消耗,和儿茶酚胺,与热量甜味剂或水相比,跨不同剂量和类型的NCS和LCS,从长远和长远来看。总共有20项研究合格:16项研究涉及底物氧化和能量消耗,四项研究涉及儿茶酚胺。大多数研究比较了在非等能量条件下NCS或LCS与热量甜味剂的急性效应。这些研究通常发现,与热量甜味剂相比,使用NCS或LCS的脂肪氧化更高,碳水化合物氧化更低。能源支出的调查结果不一致。由于研究数量有限,对于其余的结果和比较,没有令人信服的模式.总之,与热量甜味剂相比,含NCS或LCS的饮料或膳食导致更高的脂肪和更低的碳水化合物氧化。由于结果不足或不一致,无法得出其他结论。在这一研究领域的进一步研究是必要的。
    The use of non- and low-caloric sweetener(s) (NCS and LCS) as a means to prevent overweight and obesity is highly debated, as both NCS and LCS have been proposed to have a negative impact on energy homeostasis. This systematic review aimed to assess the impact of NCS and LCS on fasting and postprandial substrate oxidation, energy expenditure, and catecholamines, compared to caloric sweeteners or water, across different doses and types of NCS and LCS, acutely and in the longer-term. A total of 20 studies were eligible: 16 studies for substrate oxidation and energy expenditure and four studies for catecholamines. Most studies compared the acute effects of NCS or LCS with caloric sweeteners under non-isoenergetic conditions. These studies generally found higher fat oxidation and lower carbohydrate oxidation with NCS or LCS than with caloric sweeteners. Findings for energy expenditure were inconsistent. With the limited number of studies, no convincing pattern for the remaining outcomes and comparisons could be seen. In conclusion, drinks or meals with NCS or LCS resulted in higher fat and lower carbohydrate oxidation compared to caloric sweeteners. No other conclusions could be drawn due to insufficient or inconsistent results. Further studies in this research field are warranted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Glycogen synthase kinase-3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3-specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross-talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3-mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less-appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Accumulating evidence has suggested that the pathological changes in amyotrophic lateral sclerosis (ALS) are not only confined to the central nervous system but also occur in the peripheral circulating system. Here, we performed a meta-analysis based on the PubMed, EMBASE, EBSCO, and CNKI databases, to find out biochemical indicators associated with energy metabolism, iron homeostasis, and muscle injury that are altered in ALS patients and their correlations with ALS phenotypes. Forty-six studies covering 17 biochemical indicators, representing 5454 ALS patients and 7986 control subjects, were included in this meta-analysis. Four indicators, including fasting blood glucose level (weighted mean difference [WMD] = 0.13, 95% CI [0.06-0.21], p = 0.001), serum ferritin level (WMD = 63.42, 95% CI [48.12-78.73], p < 0.001), transferrin saturation coefficient level (WMD = 2.79, 95% CI [1.52-4.05], p < 0.001), and creatine kinase level (WMD = 80.29, 95% CI [32.90-127.67], p < 0.001), were significantly higher in the ALS patients, whereas the total iron-binding capacity (WMD = - 2.42, 95% CI [- 3.93, - 0.90], p = 0.002) was significantly lower in ALS patients than in the control subjects. In contrast, the other 12 candidates did not show significant differences between ALS patients and controls. Moreover, pooled hazard ratios (HR) showed significantly reduced survival (HR = 1.38, 95% CI [1.02-1.88], p = 0.039) of ALS patients with elevated serum ferritin levels. These findings suggest that abnormalities in energy metabolism and disruption of iron homeostasis are involved in the pathogenesis of ALS. In addition, the serum ferritin level is negatively associated with the overall survival of ALS patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    生长分化因子15(GDF15)是一种肽类激素,和转化生长因子β(TGFβ)超家族的不同成员。在正常生理学中,GDF15在多个组织中以低浓度表达。为了发挥保护作用,GDF15在许多病理状况(例如组织损伤和炎症)期间和之后过表达。然而,GDF15似乎促进恶性肿瘤晚期的肿瘤生长。最近鉴定的GDF15内源性受体,GDNF家族受体a样(GFRAL),阐明了GDF15调节能量稳态和体重的生理途径,主要是通过抑制食欲。GDF15的厌食作用在癌症相关的厌食/恶病质和肥胖症的管理中提供了一些治疗潜力。尽管GFRAL被鉴定为GDF15受体,GDF15使用的其他信号机制似乎进一步增加了开发治疗方法的可能性,这些途径应该被完全表征。在这次审查中,将讨论GDF15在各种组织中的生理和病理状况中的功能。
    Growth differentiation factor 15 (GDF15) is a peptide hormone, and a divergent member of the transforming growth factor beta (TGFβ) superfamily. In normal physiology, GDF15 is expressed in multiple tissues at a low concentration. GDF15 is overexpressed during and following many pathological conditions such as tissue injury and inflammation in order to play a protective role. However, GDF15 appears to promote tumour growth in the later stages of malignant cancer. The recently identified endogenous receptor for GDF15, GDNF family receptor a-like (GFRAL), has allowed elucidation of a physiological pathway in which GDF15 regulates energy homeostasis and body weight, primarily via appetite suppression. The anorectic effect of GDF15 provides some therapeutic potential in management of cancer-related anorexia/cachexia and obesity. Despite the identification of GFRAL as a GDF15 receptor, there appears to be other signalling mechanisms utilized by GDF15 that further increase the possibility of development of therapeutic treatments, should these pathways be fully characterized. In this review, GDF15 function in both physiological and pathological conditions in various tissues will be discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic (\'housekeeping\') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual\'s predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号