Elastic Modulus

弹性模量
  • DOI:
    文章类型: Journal Article
    OBJECTIVE: Knowledge of mechanical behavior of healthy human arteries as the guidelines to target properties of vascular grafts deserves special attention. There is a lack of mathematical model to characterize mechanical behavior of biomaterial while many mathematical models to reflect mechanics of human arteries have been proposed. The objective of this paper was set to measure mechanical properties of healthy human arteries including Common Carotid Artery (CCA), Abdominal Aorta Artery (AAA), Subclavian Artery (SA), Common Iliac Artery (CIA) and Right and Left Iliac Artery (RIA and LIA) and compare them to those of commercial ePTFE and Dacron®.
    METHODS: Series of stress relaxation and strain to failure tests vere performed on all samples. The experimental data was utilized to develop quasi-linear viscoelastic (QLV) model of both natural and artificial arteries.
    RESULTS: ePTFE is the stiffest sample, while the CCA is the most compliant one among all. RIA and CIA are more viscous than the other natural arteries, while AA and CCA are less viscous. The proposed model demonstrated an accurate fit to the experimental results, a proof of its ability to model both nonlinear elasticity and viscoelasticity of the human arteries and commercial ones.
    CONCLUSIONS: ePTFE and Dacron® are much stiffer than human arteries that may lead to the disruption of blood hemodynamic and may not be biomechanically feasible as a replacement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Mechanical properties of articular cartilage that are vital to its function are often determined by indentation tests, which can be performed at different scales. Cartilage tissue exhibits various types of structural, geometrical, and spatial variations that pose strict demands on indentation protocols. This study aims to define a reproducible micro-indentation protocol for measuring the effective (average) stiffness of the cartilage surface in a region around 1mm2. We elucidated how different parameters such as indenter size, indenter depth, and the location of the indentation influence the effective elastic modulus measured in micrometer scale on rat knee cartilage. When an indentation was performed (50μm radial probe, ≈10μm indentation depth) at exactly the same location, the variability was less than 10%, even with a recovery period of 30s. However, there was a high spatial variation and a small change of around 60μm in location could change the modulus values up to as much as 10-20 fold. The effective elastic modulus of cartilage surface layer cannot therefore be reproducibly determined from a few indentations on a cartilage sample, and requires at least 144 (12×12) indentations for a soft spherical probe with a 50μm radius. With higher depths, the spatial variation is slightly lower, allowing slightly lower number of indentations (≈80 measurements or a 9×9 frame) to provide a representative elastic modulus. Using this protocol, we determined an elastic modulus of 2.6±1.9N/mm2 at the medial side versus a higher modulus of 4.2±2.6N/mm2 at the lateral side of the tibia of 12 weeks old Wistar rats. Optimized indentation protocols similar to the one presented here are required for revealing such variations in the mechanical properties of cartilage with anatomical location.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The World Federation for Ultrasound in Medicine and Biology (WFUMB) has produced these guidelines for the use of elastography techniques in liver disease. For each available technique, the reproducibility, results, and limitations are analyzed, and recommendations are given. Finally, recommendations based on the international literature and the findings of the WFUMB expert group are established as answers to common questions. The document has a clinical perspective and is aimed at assessing the usefulness of elastography in the management of liver diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The breast section of these Guidelines and Recommendations for Elastography produced under the auspices of the World Federation of Ultrasound in Medicine and Biology (WFUMB) assesses the clinically used applications of all forms of elastography used in breast imaging. The literature on various breast elastography techniques is reviewed, and recommendations are made on evidence-based results. Practical advice is given on how to perform and interpret breast elastography for optimal results, with emphasis placed on avoiding pitfalls. Artifacts are reviewed, and the clinical utility of some artifacts is discussed. Both strain and shear wave techniques have been shown to be highly accurate in characterizing breast lesions as benign or malignant. The relationship between the various techniques is discussed, and recommended interpretation based on a BI-RADS-like malignancy probability scale is provided. This document is intended to be used as a reference and to guide clinical users in a practical way.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    This paper describes a new method for shear wave velocity estimation that is capable of extruding outliers automatically without preset threshold. The proposed method is an adaptive random sample consensus (ARANDSAC) and the metric used here is finding the certain percentage of inliers according to the closest distance criterion. To evaluate the method, the simulation and phantom experiment results were compared using linear regression with all points (LRWAP) and radon sum transform (RS) method. The assessment reveals that the relative biases of mean estimation are 20.00%, 4.67% and 5.33% for LRWAP, ARANDSAC and RS respectively for simulation, 23.53%, 4.08% and 1.08% for phantom experiment. The results suggested that the proposed ARANDSAC algorithm is accurate in shear wave speed estimation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号