Defluoridation

脱氟
  • 文章类型: Journal Article
    羟基磷灰石(HAP)是一种易于合成的,低成本矿物,已被认为是一种潜在的氟化物去除材料。HAP的一些合成方法非常简单且具有成本效益,而有些需要先进的实验室条件下复杂的合成技术。这篇综述评估了通过各种技术生产的HAP和HAP基复合材料的物理化学特性,他们最近在除氟方面的发展,最重要的是,除氟性能。第一次,根据分配系数(KD)而不是最大吸附容量(Qmax)比较了HAP和HAP复合材料的除氟性能,其受初始加载浓度的显著影响。新型HAP定制的复合材料表现出相对较高的KD值,表明其出色的氟化物去除能力以及高于120m2/g的比表面积。HAP掺杂铝配合物,HAP掺杂陶瓷珠,HAP-果胶纳米复合材料和HAP-stilbite纳米复合材料,HAP装饰纳米管,纳米线和纳米片表现出高Qmax和KD。HAP的秘密不是优异的除氟性能,而是在中性和接近中性的pH值下的最佳去除。大多数去氟材料都无法做到,使它们成为饮用水处理的理想吸附剂。多种机制,包括物理表面吸附,离子交换,和静电相互作用是脱氟的主要机制。进一步的研究工作必须集中在用于商业规模的脱氟的升级HAP基复合材料上。
    Hydroxyapatite (HAP) is an easily synthesizable, low-cost mineral that has been recognized as a potential material for fluoride removal. Some of the synthesis methods of HAP are quite straightforward and cost-effective, while some require sophisticated synthesis techniques under advanced laboratory conditions. This review assesses the physicochemical characteristics of HAP and HAP-based composites produced via various techniques, their recent development in defluoridation and most importantly, the fluoride removal performances. For the first time, fluoride removal performances of HAP and HAP composites are compared based on partition coefficient (KD) instead of maximum adsorption capacity (Qmax), which is significantly influenced by initial loading concentrations. Novel HAP tailored composites exhibit comparatively high KD values indicating the excellent capability of fluoride removal along with specific surface areas above 120 m2/g. HAP doped with aluminium complexes, HAP doped ceramic beads, HAP-pectin nanocomposite and HAP-stilbite nanocomposite, HAP decorated nanotubes, nanowires and nanosheets demonstrated high Qmax and KD. The secret of HAP is not the excellent fluoride removal performances but best removal at neutral and near-neutral pH, which most of the defluoridation materials are incapable of, making them ideal adsorbents for drinking water treatment. Multiple mechanisms including physical surface adsorption, ion-exchange, and electrostatic interactions are the main mechanisms involved in defluoridation. Further research work must be focused on upscaling HAP-based composites for defluoridation on a commercial scale.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The polluted water sources pose a serious issue concerning the various health hazards they bring along. Due to various uncontrolled anthropogenic and industrial activities, a great number of pollutants have gained entry into the water systems. Among all the emerging contaminants, anionic species such as fluoride cause a major role in polluting the water bodies because of its high reactivity with other elements. The need for water remediation has led the research community to come up with several physicochemical and electrochemical methods to remove fluoride contamination. Among the existing methods, biosorption using bio and modified biomaterials has been extensively studied for defluoridation, as they are cheap, easily available and effectively recyclable when compared to other methods for defluoridation. Adding on, these materials are non-toxic and are safe to use compared to many other synthetic materials that are toxic and require high-cost design requirements. This review focuses on the recent developments made in the defluoridation techniques by biosorption using bio and modified biomaterials and defines the current perspectives of fluoride removal specifically using biomaterials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    When safe and adequate exposure of an essential trace element is exceeded it becomes potentially toxic. Fluoride is one classic example of such a double edged sword which both plays a fundamental role in the normal growth and development of the body for example the consumption of levels between 0.5-1.0 ppm via drinking water is beneficial for prevention of dental caries but its excessive consumption leads to development of fluorosis. PURPOSE OF REVIEW: The abundance of fluorine in the environment as well as in drinking water sources are the major contributors to fluorosis. It is a serious public health concern as it is a noteworthy medical problem in 24 nations including India yet the threat of fluorosis has not been rooted out. The review focuses on recent findings related to skeletal fluorosis and role of oxidative stress in its development. The fluoride mitigation strategies adopted in recent years are also discussed. RECENT FINDINGS BASED ON CASE STUDIES: Recent findings revealed that consumption of fluoride at concentrations of 1.5 ppm is majorly responsible for skeletal fluorosis. The sampling from rural areas showed that 80% villages are having fluoride concentrations more than the WHO permissible limits and people residing in such areas are affected by the skeletal fluorosis and also in the regions of Africa and Asia endemic fluorosis have been accounted in the majority of the region affecting approximately 100 million people. Various mitigation programmes and strategies have been conducted all over the world using defluoridation. Fluorosis is a slow and progressive malady affecting our body and a serious concern to be taken into consideration and to be dealt with effectively. The fluoride toxicity although reversible, is a slow process and the side effects lack treatment options. The treatment options available are either not approachable or affordable in the rural areas commonly suffering from the fluoride toxicity. No specific treatments are available to date to treat skeletal fluorosis affectively; therefore, prevention is one of most safest and best approach to fight fluorosis. The current review lays emphasis on the skeletal fluorosis and its prevalence in recent years. It also includes the recent findings as well as the current strategies related to combat skeletal fluorosis and provides findings that might be helpful to promote the research in the field of effective treatment for fluorosis as well as development of easy and affordable methods of fluoride removal from water.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    In low concentration, fluoride is considered a necessary compound for human health. Exposure to high concentrations of fluoride is the reason for a serious disease called fluorosis. Fluorosis is categorized as Skeletal and Dental fluorosis. Several Asian countries, such as India, face contamination of water resources with fluoride. In this study, a comprehensive overview on fluoride contamination in Asian water resources has been presented. Since water contamination with fluoride in India is higher than other Asian countries, a separate section was dedicated to review published articles on fluoride contamination in this country. The status of health effects in Asian countries was another topic that was reviewed in this study. The effects of fluoride on human organs/systems such as urinary, renal, endocrine, gastrointestinal, cardiovascular, brain, and reproductive systems were another topic that was reviewed in this study. Different methods to remove fluoride from water such as reverse osmosis, electrocoagulation, nanofiltration, adsorption, ion-exchange and precipitation/coagulation were introduced in this study. Although several studies have been carried out on contamination of water resources with fluoride, the situation of water contamination with fluoride and newly developed technology to remove fluoride from water in Asian countries has not been reviewed. Therefore, this review is focused on these issues: 1) The status of fluoride contamination in Asian countries, 2) health effects of fluoride contamination in drinking water in Asia, and 3) the existing current technologies for defluoridation in Asia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Fluoride contamination of groundwater is a serious problem in several countries of the world because of the intake of excessive fluoride caused by the drinking of the contaminated groundwater. Geological and anthropogenic factors are responsible for the contamination of groundwater with fluoride. Excess amounts of fluoride in potable water may cause irreversible demineralisation of bone and tooth tissues, a condition called fluorosis, and long-term damage to the brain, liver, thyroid, and kidney. There has long been a need for fluoride removal from potable water to make it safe for human use. From among several defluoridation technologies, adsorption is the technology most commonly used due to its cost-effectiveness, ease of operation, and simple physical process. In this paper, the adsorption capacities and fluoride removal efficiencies of different types of adsorbents are compiled from relevant published data available in the literature and represented graphically. The most promising adsorbents tested so far from each category of adsorbents are also highlighted. There is still a need to discover the actual feasibility of usage of adsorbents in the field on a commercial scale and to define the reusability of adsorbents to reduce cost and the waste produced from the adsorption process. The present paper reviews the currently available methods and emerging approaches for defluoridation of water.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Fluoride is required for normal development and growth of the body. It is found in plentiful quantity in environment and fluoride content in drinking water is largest contributor to the daily fluoride intake. The behaviour of fluoride ions in the human organism can be regarded as that of \"double-edged sword\". Fluoride is beneficial in small amounts but toxic in large amounts. Excessive consumption of fluorides in various forms leads to development of fluorosis. Fluorosis is major health problem in 24 countries, including India, which lies in the geographical fluoride belt. Various technologies are being used to remove fluoride from water but still the problem has not been rooted out. The purpose of this paper is to review the available treatment modalities for fluorosis, available technologies for fluoride removal from water and ongoing fluorosis mitigation programs based on literature survey. Medline was the primary database used in the literature search. Other databases included: PubMed, Web of Science, Google Scholar, WHO, Ebscohost, Science Direct, Google Search Engine, etc.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号