BMP

BMP
  • 文章类型: Journal Article
    骨形态发生蛋白(BMP),一种骨诱导因子,是一种诱导成骨细胞分化和矿化的细胞因子,并有望适用于硬组织重建。Kielin/chordin-likeprotein(Kcp),富含半胱氨酸的蛋白质家族的一员,增强BMP信令。本研究发现,BMP-2以浓度和时间依赖性方式诱导成骨细胞中Kcp的表达。Dorsomorphin抑制BMP-2对Kcp的上调,SMAD信号传导抑制剂。还检查了BMP-2上调Kcp在BMP-2诱导成骨细胞分化中的参与,结果表明,siKcp抑制Kcp表达部分抑制了BMP-2对成骨细胞分化和矿化的诱导。一起,这些结果表明,BMP-2诱导的Kcp功能为成骨细胞中BMP-2促进成骨细胞分化和矿化提供了正反馈。
    Bone morphogenetic protein (BMP), an osteoinductive factor, is a cytokine that induces osteoblast differentiation and mineralization, and expected to be applicable for hard tissue reconstruction. Kielin/chordin-like protein (Kcp), a member of the family of cysteine-rich proteins, enhances BMP signaling. The present study found that expression of Kcp in osteoblasts was induced by BMP-2 in a concentration- and time-dependent manner. Up-regulation of Kcp by BMP-2 was inhibited by Dorsomorphin, a SMAD signaling inhibitor. The involvement of up-regulation of Kcp by BMP-2 in induction of osteoblast differentiation by BMP-2 was also examined, which showed that suppression of Kcp expression by si Kcp partially inhibited induction of osteoblast differentiation and mineralization by BMP-2. Together, these results suggest that Kcp induced by BMP-2 functions to provide positive feedback for promotion of osteoblastic differentiation and mineralization by BMP-2 in osteoblasts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内皮细胞(EC)是心血管系统的重要结构单元,具有两个主要的独特特性:异质性和可塑性。内皮异质性由组织特异性内皮表型的差异及其沿血管床长度的高度修饰倾向定义。异质性的这一方面与可塑性密切相关,ECs通过动员遗传来适应环境线索的能力,分子,和结构改变。特定的内皮细胞结构学可促进快速的结构细胞重组,此外,容易适应外在和内在的环境刺激,被称为表观遗传景观。EC,作为人体普遍分布和无处不在的细胞,在心血管系统中的作用远远超出了它们的结构功能。它们在屏障功能方面起着至关重要的作用,细胞到细胞的通信,以及无数的生理和病理过程。这些包括发展,本体发生,疾病启动,和进步,以及增长,再生,和修复。尽管在了解内皮细胞生物学方面取得了实质性进展,EC在健康状况和病理中的作用仍然是一个令人着迷的探索领域。本文旨在总结内皮生物学的知识和概念。它着重于健康和病理条件下内皮细胞的发育和功能特征,特别强调内皮表型和功能异质性。
    Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨折管理很大程度上依赖于骨的固有愈合能力,必要时,手术干预。目前,促进愈合的骨诱导疗法有限,使靶向骨骼干/祖细胞(SSPC)成为治疗发展的有希望的途径。这种方法的一个限制因素是我们对控制SSPCs行为的分子机制的不完全理解。我们最近发现富含亮氨酸的重复序列的G蛋白偶联受体6(Lgr6)在SSPCs的亚群中表达,并且是维持成年期间的骨体积和适当的骨折愈合所必需的。Lgr家族成员(Lgr4-6)是干细胞生态位的标志物,主要通过结合R-Sondin(Rspol-4)在组织再生中发挥作用。这种相互作用通过稳定Frizzled受体促进经典Wnt(cWnt)信号传导。有趣的是,我们的研究结果表明,Lgr6也可能影响cWnt非依赖性途径。值得注意的是,在人和鼠细胞的Bmp介导的成骨过程中,Lgr6的表达均得到增强。使用生化方法,RNA测序,和已发表的单细胞数据的生物信息学分析,我们发现BMP信号的元素,包括它的目标基因,pSMAD,和基因本体论途径,在没有Lgr6的情况下下调。我们的发现揭示了Bmp途径和Lgr6之间的分子相互依赖性,为骨形成和增强骨折愈合的潜在目标提供了新的见解。
    Fracture management largely relies on the bone\'s inherent healing capabilities and, when necessary, surgical intervention. Currently, there are limited osteoinductive therapies to promote healing, making targeting skeletal stem/progenitor cells (SSPCs) a promising avenue for therapeutic development. A limiting factor for this approach is our incomplete understanding of the molecular mechanisms governing SSPCs\' behavior. We have recently identified that the Leucine-rich repeat-containing G-protein coupled receptor 6 (Lgr6) is expressed in sub-populations of SSPCs, and is required for maintaining bone volume during adulthood and for proper fracture healing. Lgr family members (Lgr4-6) are markers of stem cell niches and play a role in tissue regeneration primarily by binding R-Spondin (Rspo1-4). This interaction promotes canonical Wnt (cWnt) signaling by stabilizing Frizzled receptors. Interestingly, our findings here indicate that Lgr6 may also influence cWnt-independent pathways. Remarkably, Lgr6 expression was enhanced during Bmp-mediated osteogenesis of both human and murine cells. Using biochemical approaches, RNA sequencing, and bioinformatic analysis of published single-cell data, we found that elements of BMP signaling, including its target gene, pSMAD, and gene ontology pathways, are downregulated in the absence of Lgr6. Our findings uncover a molecular interdependency between the Bmp pathway and Lgr6, offering new insights into osteogenesis and potential targets for enhancing fracture healing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    造血干细胞(HSC)是存在于成年哺乳动物的骨髓中的组织特异性干细胞群,在那里它们在个体的一生中自我更新并连续再生成年造血谱系。作为干细胞模型和临床有用性的重要性促使人们对理解导致胚胎发育过程中HSC特化的生理过程感兴趣。通过使用顺序定义的指导性分子和条件的定义的祖细胞的指令,HSC的高效定向分化仍然是不可能的。表明对前体中间身份和所需感应输入的完整集合的全面知识仍未完全理解。最近,对从内皮前体指定HSC的分子和细胞微环境的兴趣增加了。在这里,我们回顾了在理解脊椎动物门的这些生态位空间方面的最新进展,以及对生态位细胞群体的起源和分子表型的更好表征如何帮助告知和复杂先前对HSC出现和成熟所需信号传导的理解。
    Hematopoietic stem cells (HSCs) are a population of tissue-specific stem cells that reside in the bone marrow of adult mammals, where they self-renew and continuously regenerate the adult hematopoietic lineages over the life of the individual. Prominence as a stem cell model and clinical usefulness have driven interest in understanding the physiologic processes that lead to the specification of HSCs during embryonic development. High-efficiency directed differentiation of HSCs by the instruction of defined progenitor cells using sequentially defined instructive molecules and conditions remains impossible, indicating that comprehensive knowledge of the complete set of precursor intermediate identities and required inductive inputs remains incompletely understood. Recently, interest in the molecular and cellular microenvironment where HSCs are specified from endothelial precursors-the \"specification niche\"-has increased. Here we review recent progress in understanding these niche spaces across vertebrate phyla, as well as how a better characterization of the origin and molecular phenotypes of the niche cell populations has helped inform and complicate previous understanding of signaling required for HSC emergence and maturation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多能干细胞系之间的遗传差异导致细胞外信号通路的可变活性,定向分化方案的限制性可重复性。在这里,我们使用人胚胎干细胞(hESCs)来询问外源因子如何调节前肠内胚层谱系规范过程中的内源性信号事件。我们发现转化生长因子β1(TGF-β1)激活了推定的人类OTX2/LHX1基因调控网络,该网络通过拮抗内源性Wnt信号来促进前命运。与豪猪抑制相反,TGF-β1的作用不能被外源性Wnt配体逆转,提示SHISA蛋白的诱导和Fzd受体的细胞内积累使TGF-β1处理的细胞对Wnt信号传导难以反应。随后,TGF-β1介导的BMP和Wnt信号抑制抑制肝脏命运并促进胰腺命运。此外,TGF-β1治疗和胰腺特化期间的Wnt抑制联合可重复且稳健地增强hESC细胞系中胰岛素+细胞产量。广泛使用的分化方案的这种修改将提高用于基于细胞的治疗应用的胰腺β细胞产量。
    Genetic differences between pluripotent stem cell lines cause variable activity of extracellular signaling pathways, limiting reproducibility of directed differentiation protocols. Here we used human embryonic stem cells (hESCs) to interrogate how exogenous factors modulate endogenous signaling events during specification of foregut endoderm lineages. We find that transforming growth factor β1 (TGF-β1) activates a putative human OTX2/LHX1 gene regulatory network which promotes anterior fate by antagonizing endogenous Wnt signaling. In contrast to Porcupine inhibition, TGF-β1 effects cannot be reversed by exogenous Wnt ligands, suggesting that induction of SHISA proteins and intracellular accumulation of Fzd receptors render TGF-β1-treated cells refractory to Wnt signaling. Subsequently, TGF-β1-mediated inhibition of BMP and Wnt signaling suppresses liver fate and promotes pancreas fate. Furthermore, combined TGF-β1 treatment and Wnt inhibition during pancreatic specification reproducibly and robustly enhance INSULIN+ cell yield across hESC lines. This modification of widely used differentiation protocols will enhance pancreatic β cell yield for cell-based therapeutic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    心肌细胞是构成心脏并赋予心脏跳动活动的最大细胞类型。心肌细胞的适当分化依赖于来自影响心肌细胞特异性基因表达程序的几个信号通路的分化线索的有效传递和感知。信号通路还介导细胞间通讯以促进适当的心肌细胞分化。我们综述了参与心肌细胞分化的主要信号通路,包括BMP,缺口,索尼克刺猬,河马,和Wnt信号通路。此外,我们强调了不同心肌细胞系之间的差异,以及这些信号通路在心肌细胞从干细胞分化中的应用。最后,最后,我们讨论了关于心肌细胞体外分化的悬而未决的问题和目前的知识空白,并提出了新的研究途径来填补这些空白。
    Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation. We have reviewed the major signaling pathways involved in cardiomyocyte differentiation, including the BMP, Notch, sonic hedgehog, Hippo, and Wnt signaling pathways. Additionally, we highlight the differences between different cardiomyocyte cell lines and the use of these signaling pathways in the differentiation of cardiomyocytes from stem cells. Finally, we conclude by discussing open questions and current gaps in knowledge about the in vitro differentiation of cardiomyocytes and propose new avenues of research to fill those gaps.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    源自轴向结构,SonicHedgehog(Shh)分泌到近轴中胚层,它在巩膜诱导和肌组分化中起着至关重要的作用。通过鹌鹑胚胎有条件的功能丧失,我们调查了Shh活动的时间和影响,在巩膜刀衍生的椎骨和肋骨的早期形成,和外侧中胚层衍生的胸骨。为此,在第2天和第5天之间的不同时间电穿孔Hedgehog相互作用蛋白(Hip)。虽然椎体和肋骨原基显示出一致的大小减小,肋骨扩张进入体胸膜未受影响,胸骨芽发育正常。此外,我们将这些作用与局部抑制BMP活性的作用进行了比较.Noggin在外侧中胚层的转染阻碍了胸骨芽的形成。不像希普,通过Noggin或Smad6抑制BMP诱导的外侧皮肌细胞瘤唇的肌源性分化,同时阻碍肌体/肋骨复合体生长到体细胞中胚层,从而肯定了外侧胚轴上皮在肋骨引导中的作用。总的来说,这些发现强调了在近端和远端侧翼骨骼结构的形态发生中Shh和BMP活性的相反梯度的连续需求,分别。未来的研究应该解决这些早期相互作用对肌肉骨骼系统的后期形态发生和功能以及可能相关的畸形的影响。
    Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Ebstein异常是三尖瓣的先天性畸形,其特征是瓣膜小叶的异常附着,导致不同程度的瓣膜功能障碍。该实体的解剖特征是三尖瓣的间隔和后小叶的附着向下移位。其他心内畸形是常见的。从胚胎学的角度来看,未来右心房的腔没有直接连接到发育中的右心室的孔口。本章概述了目前对这种联系是如何形成的,以及三尖瓣畸形是如何由参与这一过程的分子和形态事件的失调引起的。此外,描述了显示Ebstein异常特征的小鼠模型和自然发生的犬三尖瓣畸形模型,并将其与人类模型进行了比较。尽管Ebstein的异常仍然是迄今为止了解最少的心脏畸形之一,这里总结的研究提供,总的来说,单基因和寡基因因素驱动发病机制的证据。
    Ebstein\'s anomaly is a congenital malformation of the tricuspid valve characterized by abnormal attachment of the valve leaflets, resulting in varying degrees of valve dysfunction. The anatomic hallmarks of this entity are the downward displacement of the attachment of the septal and posterior leaflets of the tricuspid valve. Additional intracardiac malformations are common. From an embryological point of view, the cavity of the future right atrium does not have a direct orifice connected to the developing right ventricle. This chapter provides an overview of current insight into how this connection is formed and how malformations of the tricuspid valve arise from dysregulation of molecular and morphological events involved in this process. Furthermore, mouse models that show features of Ebstein\'s anomaly and the naturally occurring model of canine tricuspid valve malformation are described and compared to the human model. Although Ebstein\'s anomaly remains one of the least understood cardiac malformations to date, the studies summarized here provide, in aggregate, evidence for monogenic and oligogenic factors driving pathogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    瓣膜形成的过程是复杂的过程,其涉及在精确时间的各种途径之间的复杂的相互作用。虽然我们还没有完全阐明导致正常瓣膜形成的分子途径,我们已经确定了这个过程中的几个主要参与者。我们现在能够暗示TGF-β,BMP,和NOTCH怀疑三尖瓣闭锁(TA),以及它们的下游目标:NKX2-5、TBX5、NFATC1、GATA4和SOX9。我们知道TGF-β和BMP途径在SMAD4分子上汇聚,我们认为这种分子在将两种途径与TA联系起来方面起着非常重要的作用。同样,我们研究了NOTCH途径,并将HEY2确定为该途径与TA之间的潜在联系.与TA有关的另一种转录因子是NFATC1。虽然存在几种小鼠模型,包括部分TA异常作为其表型,没有真正的小鼠模型可以说代表TA。弥合这一差距肯定会阐明这一复杂的分子途径,并有助于更好地了解疾病过程。
    The process of valve formation is a complex process that involves intricate interplay between various pathways at precise times. Although we have not completely elucidated the molecular pathways that lead to normal valve formation, we have identified a few major players in this process. We are now able to implicate TGF-ß, BMP, and NOTCH as suspects in tricuspid atresia (TA), as well as their downstream targets: NKX2-5, TBX5, NFATC1, GATA4, and SOX9. We know that the TGF-ß and the BMP pathways converge on the SMAD4 molecule, and we believe that this molecule plays a very important role to tie both pathways to TA. Similarly, we look at the NOTCH pathway and identify the HEY2 as a potential link between this pathway and TA. Another transcription factor that has been implicated in TA is NFATC1. While several mouse models exist that include part of the TA abnormality as their phenotype, no true mouse model can be said to represent TA. Bridging this gap will surely shed light on this complex molecular pathway and allow for better understanding of the disease process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    半月瓣和主动脉弓的病变可以单独发生,也可以作为描述良好的临床综合征的一部分发生。将讨论钙化性主动脉瓣疾病的多基因原因,包括NOTCH1突变的关键作用。此外,将概述二叶主动脉瓣疾病的复杂特征,无论是在散发性/家族性病例中,还是在相关综合征中,比如Alagille,威廉姆斯,和歌舞uki综合征。主动脉弓异常,特别是主动脉缩窄和主动脉弓中断,包括它们与特纳和22q11删除等综合征的关联,分别,也讨论了。最后,总结了先天性肺动脉瓣狭窄的遗传基础,特别注意Ras-/丝裂原活化蛋白激酶(Ras/MAPK)途径综合征和其他不太常见的关联,比如Holt-Oram综合征.
    Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号