AlphaFold

AlphaFold
  • 文章类型: Journal Article
    小分子药物设计取决于获得共结晶的配体-蛋白质结构。尽管AlphaFold2在蛋白质天然结构预测方面取得了进展,它对载脂蛋白结构的关注忽略了配体和相关的完整结构。此外,设计选择性药物通常受益于不同亚稳态构象的靶向。因此,AlphaFold2模型在虚拟筛选和药物发现中的直接应用仍是暂时的。这里,我们展示了一个基于AlphaFold2的框架,结合了全原子增强的采样分子动力学和诱导拟合对接,名为AF2RAVE-Glide,进行基于计算模型的亚稳态蛋白激酶构象的小分子结合,从蛋白质序列开始。我们展示了AF2RAVE-Glide对三种不同的哺乳动物蛋白激酶及其I型和II型抑制剂的工作流程,特别强调结合已知的II型激酶抑制剂,其靶向亚稳态的经典DFG-out状态。这些状态不容易从AlphaFold2采样。这里,我们演示了如何使用AF2RAVE对这些亚稳态构象进行取样,以获得足够高的准确度,从而使已知的II型激酶抑制剂的后续对接在对接计算中的成功率超过50%.我们认为该方案应该可用于其他激酶和更多蛋白质。
    Small-molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2\'s strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2-based framework combined with all-atom enhanced sampling molecular dynamics and Induced Fit docking, named AF2RAVE-Glide, to conduct computational model-based small-molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different mammalian protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here, we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    N-甲基-D-天冬氨酸(NMDA)受体是由两个强制性GluN1亚基和两个替代性GluN2或GluN3亚基组成的异四等离子通道,形成GluN1-N2、GluN1-N3和GluN1-N2-N3型NMDA受体。广泛的研究集中在常规GluN1-GluN2NMDA受体的功能和结构特性上,因为它们的早期发现和高表达水平。然而,关于非常规GluN1-N3NMDA受体的知识仍然有限.在这项研究中,我们模拟了GluN1-N3A,GluN1-N3B,和GluN1-N3A-N3BNMDA受体使用深度学习的蛋白质语言预测算法AlphaFold和RoseTTAFoldAll-Atom。然后,我们将这些结构与GluN1-N2和GluN1-N3A受体cryo-EM结构进行了比较,发现GluN1-N3受体在亚基排列方面具有不同的特性,域交换,和域交互。此外,我们预测了激动剂或拮抗剂结合的结构,突出关键的分子-残基相互作用。我们的发现为NMDA受体的结构和功能多样性提供了新的思路,为药物开发提供了新的方向。本研究使用先进的人工智能算法对GluN1-N3NMDA受体进行建模,揭示了与常规GluN1-N2受体相比独特的结构特性和相互作用。通过突出关键的分子-残基相互作用并预测配体结合的结构,我们的研究增强了对NMDA受体多样性的理解,并为靶向药物开发提供了新的见解.
    N-methyl-D-aspartate (NMDA) receptors are heterotetrametric ion channels composed of two obligatory GluN1 subunits and two alternative GluN2 or GluN3 subunits, forming GluN1-N2, GluN1-N3, and GluN1-N2-N3 type of NMDA receptors. Extensive research has focused on the functional and structural properties of conventional GluN1-GluN2 NMDA receptors due to their early discovery and high expression levels. However, the knowledge of unconventional GluN1-N3 NMDA receptors remains limited. In this study, we modeled the GluN1-N3A, GluN1-N3B, and GluN1-N3A-N3B NMDA receptors using deep-learned protein-language predication algorithms AlphaFold and RoseTTAFold All-Atom. We then compared these structures with GluN1-N2 and GluN1-N3A receptor cryo-EM structures and found that GluN1-N3 receptors have distinct properties in subunit arrangement, domain swap, and domain interaction. Furthermore, we predicted the agonist- or antagonist-bound structures, highlighting the key molecular-residue interactions. Our findings shed new light on the structural and functional diversity of NMDA receptors and provide a new direction for drug development. This study uses advanced AI algorithms to model GluN1-N3 NMDA receptors, revealing unique structural properties and interactions compared to conventional GluN1-N2 receptors. By highlighting key molecular-residue interactions and predicting ligand-bound structures, our research enhances the understanding of NMDA receptor diversity and offers new insights for targeted drug development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    吡喃酮-2,4-二羧酸(PDC)是一种有价值的聚合物前体,其可来源于木质素的微生物降解。微生物生产PDC的关键酶是CHMS脱氢酶,其作用于底物4-羧基-2-羟基粘康酸-6-半醛(CHMS)。我们介绍了与辅因子NADP结合的CHMS脱氢酶(来自睾丸激素的PmdC)的晶体结构,在它的三维建筑上发光,并揭示负责结合NADP的残基。使用结构同源性的组合,分子对接,和量子化学计算我们已经预测了CHMS的结合位点。保守序列中的关键组氨酸残基被鉴定为对于结合CHMS的羟基和促进NADP的脱氢至关重要。突变这些组氨酸残基导致酶活性的丧失,导致酶机理的拟议模型。这些发现有望帮助指导蛋白质和代谢工程的努力,以提高聚合物原料合成的生物途径中的PDC产量。
    Pyrone-2,4-dicarboxylic acid (PDC) is a valuable polymer precursor that can be derived from the microbial degradation of lignin. The key enzyme in the microbial production of PDC is CHMS dehydrogenase, which acts on the substrate 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS). We present the crystal structure of CHMS dehydrogenase (PmdC from Comamonas testosteroni) bound to the cofactor NADP, shedding light on its three-dimensional architecture, and revealing residues responsible for binding NADP. Using a combination of structural homology, molecular docking, and quantum chemistry calculations we have predicted the binding site of CHMS. Key histidine residues in a conserved sequence are identified as crucial for binding the hydroxyl group of CHMS and facilitating dehydrogenation with NADP. Mutating these histidine residues results in a loss of enzyme activity, leading to a proposed model for the enzyme\'s mechanism. These findings are expected to help guide efforts in protein and metabolic engineering to enhance PDC yields in biological routes to polymer feedstock synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞器之间的细胞运输通常由接触载体蛋白以将其运输到目的地的短基序来保证。泛素E3连接酶环指蛋白13(RNF13),扩散的调节器,凋亡,和蛋白质贩运,通过二亮氨酸基序与网格蛋白接头蛋白复合物AP-3的结合定位到内溶酶体区室。该基序内的突变降低了RNF13与AP-3相互作用的能力。这里,我们的研究表明发现了一个基于谷氨酰胺的基序,该基序类似于RNF13的C端区域内的基于酪氨酸的基序,该基序与网格蛋白接头蛋白复合物AP-1结合,特别是与AP-3没有功能性相互作用.利用生化,分子,和HeLa细胞中的细胞方法,我们的研究表明,RNF13二亮氨酸变体使用AP-1依赖性途径从高尔基体向内体区室输出。总的来说,这项研究提供了对RNF13的二亮氨酸分选基序变体使用的替代途径的机制见解。
    Cellular trafficking between organelles is typically assured by short motifs that contact carrier proteins to transport them to their destination. Ubiquitin E3 ligase RING finger protein 13 (RNF13), a regulator of proliferation, apoptosis, and protein trafficking, localizes to endolysosomal compartments through the binding of a dileucine motif to clathrin adaptor protein complex AP-3. Mutations within this motif reduce the ability of RNF13 to interact with AP-3. Here, our study shows the discovery of a glutamine-based motif that resembles a tyrosine-based motif within RNF13\'s C-terminal region that binds to the clathrin adaptor protein complex AP-1, notably without a functional interaction with AP-3. Using biochemical, molecular, and cellular approaches in HeLa cells, our study demonstrates that a RNF13 dileucine variant uses an AP-1-dependent pathway to be exported from the Golgi towards the endosomal compartment. Overall, this study provides mechanistic insights into the alternate route used by variant of RNF13\'s dileucine sorting motif.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电压门控离子通道(VGIC)在调节可兴奋细胞的电活动中至关重要,并且是治疗包括心律失常和神经性疼痛在内的许多疾病的关键药物靶标。尽管意义重大,在VGIC药物开发中,如实现目标选择性等挑战仍然存在。深度学习的最新进展,特别是扩散模型,已经实现了仅基于其结构的任何临床相关蛋白质的蛋白质结合剂的计算设计。这些发展与VGIC的实验结构数据激增相吻合,为计算设计工作提供了丰富的基础。这篇综述探讨了使用深度学习和扩散方法进行计算蛋白质设计的最新进展,专注于它们在设计蛋白质结合剂以调节VGIC活性中的应用。我们讨论了这些方法用于计算设计靶向VGIC不同区域的蛋白质结合剂的潜在用途。包括孔隙域,电压传感域,并与辅助子单元接口。我们提供了不同设计场景的全面概述,讨论关键的结构考虑因素,并解决开发VGIC靶向蛋白结合剂的实际挑战。通过探索这些创新的计算方法,我们的目标是为开发能够显著推进VGIC药理学并导致发现有效和安全治疗的新策略提供框架.
    Voltage-gated ion channels (VGICs) are pivotal in regulating electrical activity in excitable cells and are critical pharmaceutical targets for treating many diseases including cardiac arrhythmia and neuropathic pain. Despite their significance, challenges such as achieving target selectivity persist in VGIC drug development. Recent progress in deep learning, particularly diffusion models, has enabled the computational design of protein binders for any clinically relevant protein based solely on its structure. These developments coincide with a surge in experimental structural data for VGICs, providing a rich foundation for computational design efforts. This review explores the recent advancements in computational protein design using deep learning and diffusion methods, focusing on their application in designing protein binders to modulate VGIC activity. We discuss the potential use of these methods to computationally design protein binders targeting different regions of VGICs, including the pore domain, voltage-sensing domains, and interface with auxiliary subunits. We provide a comprehensive overview of the different design scenarios, discuss key structural considerations, and address the practical challenges in developing VGIC-targeting protein binders. By exploring these innovative computational methods, we aim to provide a framework for developing novel strategies that could significantly advance VGIC pharmacology and lead to the discovery of effective and safe therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:PICK1PDZ结构域已被确定为神经系统疾病的潜在药物靶标。经过多年的努力,一些抑制剂,例如TAT-C5和mPD5,已经通过实验发现以相对高的结合亲和力与PDZ结构域结合。随着计算研究的迅速发展,迫切需要更有效的计算方法来设计靶向蛋白质的可行配体。
    方法:最近,一个新开发的程序,名为AfDesign(ColabDesign的一部分),位于https://github.com/sokrypton/ColabDesign),一个基于AlphaFold的开源软件,已经表明能够产生与目标蛋白质结合的配体,从而潜在地促进配体发展过程。为了评估这个程序的性能,我们探索了它靶向PICK1PDZ域的能力,鉴于我们目前对它的理解。我们发现,配体的指定长度和再循环次数在生成具有最佳性能的配体中起着至关重要的作用。
    结果:利用序列长度为5的配体的AfDesign产生了与先前鉴定的配体最高的可比较的配体。此外,与手动创建的序列相比,这些设计的配体显示出明显更低的结合能。
    结论:这项工作表明,AfDesign可能是促进探索配体空间以靶向PDZ结构域的强大工具。
    BACKGROUND: The PICK1 PDZ domain has been identified as a potential drug target for neurological disorders. After many years of effort, a few inhibitors, such as TAT-C5 and mPD5, have been discovered experimentally to bind to the PDZ domain with a relatively high binding affinity. With the rapid growth of computational research, there is an urgent need for more efficient computational methods to design viable ligands that target proteins.
    METHODS: Recently, a newly developed program called AfDesign (part of ColabDesign) at https:// github.com/sokrypton/ColabDesign), an open-source software built on AlphaFold, has been suggested to be capable of generating ligands that bind to targeted proteins, thus potentially facilitating the ligand development process. To evaluate the performance of this program, we explored its ability to target the PICK1 PDZ domain, given our current understanding of it. We found that the designated length of the ligand and the number of recycles play vital roles in generating ligands with optimal properties.
    RESULTS: Utilizing AfDesign with a sequence length of 5 for the ligand produced the highest comparable ligands to that of prior identified ligands. Moreover, these designed ligands displayed significantly lower binding energy compared to manually created sequences.
    CONCLUSIONS: This work demonstrated that AfDesign can potentially be a powerful tool to facilitate the exploration of the ligand space for the purpose of targeting PDZ domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从其序列准确预测抗体-抗原复合物结构的能力可以极大地促进我们对免疫系统的理解,并有助于开发新的抗体疗法。在机器学习(ML)的进步推动下,在预测蛋白质-蛋白质相互作用(PPI)方面取得了相当大的进展。要了解字段的当前状态,我们比较了从序列中预测抗体-抗原复合物的六种代表性方法,包括两种训练来预测PPI的深度学习方法(AlphaFold-Multimer和RoseTTAFold),两种复合方法,最初分别预测抗体和抗原结构并将其对接(使用抗体模式ClusPro),在Rosetta(SnugDock)中对ClusPro的全球对接姿势进行局部改进,以及通过基于ML的表位和互补位预测(AbAdapt)将同源性建模与刚体对接相结合的管道。我们发现AlphaFold-Multimer优于其他方法,尽管绝对性能留下了相当大的改进空间。较低质量的AlphaFold-Multimer模型在三级基序(TERM)的水平上显示出明显的结构偏差,在蛋白质数据库(PDB)的不含抗体的结构中具有较少的结构匹配。具体来说,较好的模型在抗体-抗原界面表现出较常见的PDB样TERM。重要的是,性能与界面TERM的共性之间的明确关系表明,结构数据库中界面几何数据的稀缺性目前可能限制了ML在预测抗体-抗原相互作用方面的应用.
    The ability to accurately predict antibody-antigen complex structures from their sequences could greatly advance our understanding of the immune system and would aid in the development of novel antibody therapeutics. There have been considerable recent advancements in predicting protein-protein interactions (PPIs) fueled by progress in machine learning (ML). To understand the current state of the field, we compare six representative methods for predicting antibody-antigen complexes from sequence, including two deep learning approaches trained to predict PPIs in general (AlphaFold-Multimer and RoseTTAFold), two composite methods that initially predict antibody and antigen structures separately and dock them (using antibody-mode ClusPro), local refinement in Rosetta (SnugDock) of globally docked poses from ClusPro, and a pipeline combining homology modeling with rigid-body docking informed by ML-based epitope and paratope prediction (AbAdapt). We find that AlphaFold-Multimer outperformed other methods, although the absolute performance leaves considerable room for improvement. AlphaFold-Multimer models of lower quality display significant structural biases at the level of tertiary motifs (TERMs) toward having fewer structural matches in non-antibody-containing structures from the Protein Data Bank (PDB). Specifically, better models exhibit more common PDB-like TERMs at the antibody-antigen interface than worse ones. Importantly, the clear relationship between performance and the commonness of interfacial TERMs suggests that the scarcity of interfacial geometry data in the structural database may currently limit the application of ML to the prediction of antibody-antigen interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究提出了植物防御肽的结构系统发育分析,揭示它们的进化关系,结构多样化,和功能适应。利用包含来自RCSB蛋白质数据库和AlphaFoldDB的实验和预测结构的可靠数据集,我们构建了详细的系统发育树,以阐明植物防御肽家族的独特进化路径。我们的发现展示了防御肽的进化复杂性,强调它们的多样性和对它们的抗菌或防御功能至关重要的关键结构基序的保护。结果还强调了防御肽在植物进化中的适应性意义。强调它们在应对生态压力和病原体相互作用中的作用。
    This study presents a structural phylogenetic analysis of plant defensive peptides, revealing their evolutionary relationships, structural diversification, and functional adaptations. Utilizing a robust dataset comprising both experimental and predicted structures sourced from the RCSB Protein Data Bank and AlphaFold DB, we constructed a detailed phylogenetic tree to elucidate the distinct evolutionary paths of plant defensive peptide families. Our findings showcase the evolutionary intricacies of defensive peptides, highlighting their diversity and the conservation of key structural motifs critical to their antimicrobial or defensive functions. The results also underscore the adaptive significance of defensive peptides in plant evolution, highlighting their roles in responding to ecological pressures and pathogen interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类Atg8家族成员GABARAP参与许多自噬相关和不相关的过程。我们最近观察到,特别是GABARAP的缺乏会增强配体刺激后的表皮生长因子受体(EGFR)降解。这里,我们报道了EGFR内的两个推定的LC3相互作用区(LIR),其中第一个(LIR1)在计算机上被选为GABARAP结合位点。的确,体外相互作用研究揭示了LIR1与GABARAP和GABARAPL1的优先结合。我们的X射线数据表明,核心LIR1残基FLPV与GABARAP的两个疏水口袋相互作用,表明经典结合。尽管LIR1占据了LIR对接站点,在这种情况下,GABARAPY49和L50似乎是可有可无的。我们的数据支持以下假设:GABARAP至少部分通过直接结合影响EGFR的命运。
    The human Atg8 family member GABARAP is involved in numerous autophagy-related and -unrelated processes. We recently observed that specifically the deficiency of GABARAP enhances epidermal growth factor receptor (EGFR) degradation upon ligand stimulation. Here, we report on two putative LC3-interacting regions (LIRs) within EGFR, the first of which (LIR1) is selected as a GABARAP binding site in silico. Indeed, in vitro interaction studies reveal preferential binding of LIR1 to GABARAP and GABARAPL1. Our X-ray data demonstrate interaction of core LIR1 residues FLPV with both hydrophobic pockets of GABARAP suggesting canonical binding. Although LIR1 occupies the LIR docking site, GABARAP Y49 and L50 appear dispensable in this case. Our data support the hypothesis that GABARAP affects the fate of EGFR at least in part through direct binding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    低分辨率的晶体学必须从较少的实验观察中确定原子模型,这在没有模型的情况下是具有挑战性的。此外,当独立实验数据稀缺时,模型偏差更为严重。我们的方法通过将使用Phaser的精确模型片段的位置与密度修改和使用SHELXE对结果图的解释相结合来解决相位问题。从局部来看,正确的结构,密度修饰过程和立体化学约束绘制结构的其余部分,验证结果。现在在低分辨率下利用了相同的原理。线圈很重要,普遍存在的结构,但众所周知很难相位和预测。只要螺旋正确取向,正确的解决方案和不正确的解决方案都无法通过晶体学品质因数进行区分。我们结合了卷曲螺旋验证,旨在建立竞争,不相容的结构假设来探测这两个结果,并建立数据的力量来区分它们。在ARCIMBOLDO_LITE中证明了从3到4的测试用例中盘绕线圈定相和验证的效率,放置单螺旋,在ARCIMBOLDO_SHREDDER中,片段来自AlphaFold模型。低分辨率的SHELXE跟踪已得到增强,保持其当地特色,但扩展环境评估。对于非螺旋结构,验证在片段定位过程中进行了演示。它的使用以VSR1结构的解决方案为例来说明,取决于LLG优化和电子密度新功能的出现。依靠验证,我们已经将ARCIMBOLDO软件的使用扩展到低分辨率。
    Crystallography at low resolution must determine the atomic model from less experimental observations, which is challenging in the absence of a model. In addition, model bias is more severe when independent experimental data are scarce. Our methods solve the phase problem by combining the location of accurate model fragments using Phaser with density modification and interpretation of the resulting maps using SHELXE. From a partial, correct structure, the density modification process and the stereochemical constraints draw the rest of the structure, validating the result. This same principle is now exploited at low resolution. Coiled coils are important, ubiquitous structures but notoriously difficult to phase and to predict. Both correct solutions and incorrect ones are poorly discriminated by the crystallographic figures of merit as long as helices are correctly oriented. We incorporate coiled-coil verification, designed to set up competing, incompatible structural hypotheses to probe both the results and establish the power of the data to discriminate them. Efficiency of coiled-coil phasing and validation in test cases from 3 to 4 Å is demonstrated in ARCIMBOLDO_LITE, placing single helices, and in ARCIMBOLDO_SHREDDER, with fragments derived from AlphaFold models. SHELXE tracing at low resolution has been enhanced, maintaining its local character but extending the environment assessment. For non-helical structures, verification is demonstrated in the fragment location process. Its use is exemplified with the solution of the VSR1 structure at 3.5 Å, depending on LLG optimization and the emergence of new features in the electron density. Relying on verification, we have extended the use of the ARCIMBOLDO software to low resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号