Mesh : Humans Male Adult Female Theta Rhythm / physiology Brain / physiology Neuronal Plasticity / physiology Epilepsy / physiopathology therapy Young Adult Nerve Net / physiology Middle Aged Electroencephalography Evoked Potentials / physiology Electric Stimulation / methods Electrocorticography

来  源:   DOI:10.1038/s41467-024-51443-1   PDF(Pubmed)

Abstract:
Theta-burst stimulation (TBS), a patterned brain stimulation technique that mimics rhythmic bursts of 3-8 Hz endogenous brain rhythms, has emerged as a promising therapeutic approach for treating a wide range of brain disorders, though the neural mechanism of TBS action remains poorly understood. We investigated the neural effects of TBS using intracranial EEG (iEEG) in 10 pre-surgical epilepsy participants undergoing intracranial monitoring. Here we show that individual bursts of direct electrical TBS at 29 frontal and temporal sites evoked strong neural responses spanning broad cortical regions. These responses exhibited dynamic local field potential voltage changes over the course of stimulation presentations, including either increasing or decreasing responses, suggestive of short-term plasticity. Stronger stimulation augmented the mean TBS response amplitude and spread with more recording sites demonstrating short-term plasticity. TBS responses were stimulation site-specific with stronger TBS responses observed in regions with strong baseline stimulation effective (cortico-cortical evoked potentials) and functional (low frequency phase locking) connectivity. Further, we could use these measures to predict stable and varying (e.g. short-term plasticity) TBS response locations. Future work may integrate pre-treatment connectivity alongside other biophysical factors to personalize stimulation parameters, thereby optimizing induction of neuroplasticity within disease-relevant brain networks.
摘要:
θ脉冲刺激(TBS),一种模式化的脑刺激技术,模拟3-8Hz内源性脑节律的节律性爆发,已经成为治疗各种脑部疾病的一种有前途的治疗方法,尽管对TBS作用的神经机制仍知之甚少。我们使用颅内脑电图(iEEG)在10名接受颅内监测的术前癫痫参与者中研究了TBS的神经效应。在这里,我们表明,在29个额叶和颞叶部位的直接电TBS的个体爆发引起了跨越广泛皮质区域的强烈神经反应。这些响应在刺激呈现过程中表现出动态的局部场电位电压变化。包括增加或减少反应,暗示短期可塑性。更强的刺激增加了平均TBS反应幅度,并在更多的记录部位传播,证明了短期可塑性。TBS反应是刺激位点特异性的,在具有强基线刺激有效(皮质-皮质诱发电位)和功能(低频锁相)连通性的区域中观察到更强的TBS反应。Further,我们可以使用这些措施来预测稳定和变化(例如短期可塑性)的TBS响应位置。未来的工作可能会将治疗前的连通性与其他生物物理因素相结合,以个性化刺激参数,从而优化疾病相关脑网络中神经可塑性的诱导。
公众号