关键词: Drought Flooding Legumes Root phenotyping Root system architecture Water stress

Mesh : Plant Roots / genetics growth & development physiology Phenotype Fabaceae / genetics physiology Chromosome Mapping Dehydration Adaptation, Physiological / genetics Droughts Floods Crops, Agricultural / genetics growth & development physiology

来  源:   DOI:10.1186/s12870-024-05477-8   PDF(Pubmed)

Abstract:
BACKGROUND: Climate change induces perturbation in the global water cycle, profoundly impacting water availability for agriculture and therefore global food security. Water stress encompasses both drought (i.e. water scarcity) that causes the drying of soil and subsequent plant desiccation, and flooding, which results in excess soil water and hypoxia for plant roots. Terrestrial plants have evolved diverse mechanisms to cope with soil water stress, with the root system serving as the first line of defense. The responses of roots to water stress can involve both structural and physiological changes, and their plasticity is a vital feature of these adaptations. Genetic methodologies have been extensively employed to identify numerous genetic loci linked to water stress-responsive root traits. This knowledge is immensely important for developing crops with optimal root systems that enhance yield and guarantee food security under water stress conditions.
RESULTS: This review focused on the latest insights into modifications in the root system architecture and anatomical features of legume roots in response to drought and flooding stresses. Special attention was given to recent breakthroughs in understanding the genetic underpinnings of legume root development under water stress. The review also described various root phenotyping techniques and examples of their applications in different legume species. Finally, the prevailing challenges and prospective research avenues in this dynamic field as well as the potential for using root system architecture as a breeding target are discussed.
CONCLUSIONS: This review integrated the latest knowledge of the genetic components governing the adaptability of legume roots to water stress, providing a reference for using root traits as the new crop breeding targets.
摘要:
背景:气候变化引起全球水循环的扰动,深刻影响农业用水供应,从而影响全球粮食安全。水分胁迫包括干旱(即缺水),导致土壤干燥和随后的植物干燥,洪水,导致土壤水分过剩和植物根系缺氧。陆生植物已经进化出多种机制来应对土壤水分胁迫,以根系为第一道防线。根系对水分胁迫的反应可以涉及结构和生理变化,它们的可塑性是这些适应的重要特征。遗传方法已被广泛用于鉴定与水分胁迫响应根性状相关的许多遗传基因座。这些知识对于开发具有最佳根系的作物非常重要,这些作物可以在水分胁迫条件下提高产量并保证粮食安全。
结果:这篇综述的重点是对豆科植物根的根系结构和解剖特征在干旱和洪水胁迫下的变化的最新见解。在了解水分胁迫下豆科植物根系发育的遗传基础方面,最近的突破得到了特别关注。该评论还描述了各种根表型技术及其在不同豆科植物中的应用实例。最后,讨论了在这个动态领域中的主要挑战和前瞻性研究途径,以及使用根系结构作为育种目标的潜力。
结论:这篇综述综合了控制豆科植物根对水分胁迫适应性的遗传成分的最新知识,为利用根系性状作为作物育种新指标提供参考。
公众号