关键词: Bioprocessing Design of experiment (DoE) Nanomaterials Phenazines Stimulation

Mesh : Pyocyanine / metabolism Zinc Oxide / chemistry pharmacology Pseudomonas aeruginosa / metabolism drug effects Nanoparticles / chemistry Metal Nanoparticles / chemistry Reactive Oxygen Species / metabolism Temperature Stress, Physiological Biomass

来  源:   DOI:10.1186/s12934-024-02486-y   PDF(Pubmed)

Abstract:
BACKGROUND: Pyocyanin is a blue pigment produced by Pseudomonas aeruginosa. Due to its unique redox properties over the last decade, it has gained more and more interest as a utile chemical. Nevertheless, it remains a rather costly reagent. It was previously shown that the production of pyocyanin can be enhanced by employing various methods. Among them are using statistical methods for planning the experiments or exposing bacterial cultures to stressors such as nanoparticles dosed in sublethal concentrations, e.g. zinc oxide nanoparticles.
RESULTS: The Design of Experiment (DoE) methodology allowed for calculating the optimal process temperature and nanoparticle concentration to intensify pyocyanin production. Low concentrations of the nanoparticles (6.06 µg/mL) and a temperature of 32℃ enhanced pyocyanin production, whereas higher concentrations of nanoparticles (275.75 µg/mL) and higher temperature stimulated biomass production and caused the abolishment of pyocyanin production. Elevated pigment production in zinc oxide nanoparticles-supplemented media was sustained in the scaled-up culture. Conducted analyses confirmed that observed stimulation of pyocyanin production is followed by higher membrane potential, altered gene expression, generation of reactive oxygen species, and accumulation of zinc in the cell\'s biomass.
CONCLUSIONS: Pyocyanin production can be steered using ZnO nanoparticles. Elevated production of pyocyanin due to exposure to nanoparticles is followed by the number of changes in physiology of bacteria and is a result of the cellular stress. We showed that the stress response of bacteria can be optimised using statistical methods and result in producing the desired metabolite more effectively.
摘要:
背景:花青素是由铜绿假单胞菌产生的蓝色色素。由于其在过去十年中独特的氧化还原特性,作为一种有用的化学品,它获得了越来越多的兴趣。然而,它仍然是一种相当昂贵的试剂。先前已经表明,通过采用各种方法可以提高绿脓苷的产量。其中包括使用统计方法来计划实验或将细菌培养物暴露于应激源,例如以亚致死浓度给药的纳米颗粒,例如氧化锌纳米颗粒。
结果:实验设计(DoE)方法允许计算最佳工艺温度和纳米颗粒浓度以增强绿脓苷的生产。低浓度的纳米粒子(6.06µg/mL)和32℃的温度增强了绿脓苷的产生,而更高浓度的纳米颗粒(275.75µg/mL)和更高的温度刺激了生物量的产生,并导致了绿脓苷的产生。在放大的培养物中,氧化锌纳米颗粒补充的培养基中色素产量的提高得以维持。进行的分析证实,观察到的绿脓苷生产的刺激随后是更高的膜电位,改变基因表达,产生活性氧,和锌在细胞生物量中的积累。
结论:可以使用ZnO纳米颗粒来控制氰化素的生产。由于暴露于纳米颗粒而导致的绿脓色素的产生增加是细菌生理变化的数量,并且是细胞应激的结果。我们表明,可以使用统计方法优化细菌的应激反应,并导致更有效地产生所需的代谢物。
公众号