关键词: Bacillus pumilus RNase amyloid-like proteins binase extracellular membrane vesicles flagellar proteins genome proteome

Mesh : Bacillus pumilus / metabolism genetics enzymology Extracellular Vesicles / metabolism genetics Proteome / metabolism Bacterial Proteins / metabolism genetics Ribonucleases / metabolism genetics Phosphates / metabolism Drug Resistance, Bacterial / genetics Endoribonucleases

来  源:   DOI:10.31857/S0026898424010186, EDN: NRBQXZ

Abstract:
Production of extracellular membrane vesicles plays an important role in communication in bacterial populations and in bacteria-host interactions. Vesicles as carriers of various regulatory and signaling molecules may be potentially used as disease biomarkers and promising therapeutic agents, including vaccine preparations. The composition of membrane vesicles has been deciphered for a limited number of Gram-negative and Gram-positive bacteria. In this work, for the first time, extracellular membrane vesicles of a streptomycin-resistant strain Bacillus pumilus 3-19, a producer of extracellular guanyl-preferring ribonuclease binase, are isolated, visualized, and characterized by their genome and proteome composition. It has been established that there is no genetic material in the vesicles and the spectrum of the proteins differs depending on the phosphate content in the culture medium of the strain. Vesicles from a phosphate-deficient medium carry 49 unique proteins in comparison with 101 from a medium with the high phosphate content. The two types of vesicles had 140 mutual proteins. Flagellar proteins, RNase J, which is the main enzyme of RNA degradosomes, phosphatases, peptidases, iron transporters, signal peptides, were identified in vesicles. Antibiotic resistance proteins and amyloid-like proteins whose genes are present in B. pumilus 3-19 cells are absent. Phosphate deficiency-induced binase was found only in vesicles from a phosphate-deficient medium.
摘要:
细胞外膜囊泡的产生在细菌种群的通讯和细菌-宿主相互作用中起重要作用。作为各种调节和信号分子的载体的囊泡可能潜在地用作疾病生物标志物和有前途的治疗剂。包括疫苗制剂。对于有限数量的革兰氏阴性和革兰氏阳性细菌,已经破译了膜囊泡的组成。在这项工作中,第一次,链霉素抗性菌株的细胞外膜囊泡短小芽孢杆菌3-19,细胞外鸟苷酸偏好核糖核酸酶的生产者,是孤立的,可视化,并以它们的基因组和蛋白质组组成为特征。已经确定,囊泡中没有遗传物质,并且蛋白质的光谱根据菌株培养基中的磷酸盐含量而有所不同。来自缺乏磷酸盐的培养基的囊泡携带49种独特的蛋白质,而来自高磷酸盐含量的培养基的囊泡则携带101种。这两种类型的囊泡具有140个相互的蛋白质。鞭毛蛋白,RNaseJ,它是RNA降解体的主要酶,磷酸酶,肽酶,铁运输机,信号肽,在囊泡中被发现。其基因存在于短小芽孢杆菌3-19细胞中的抗生素抗性蛋白和淀粉样蛋白不存在。仅在磷酸盐缺乏培养基的囊泡中发现了磷酸盐缺乏诱导的结合酶。
公众号