flagellar proteins

  • 文章类型: English Abstract
    细胞外膜囊泡的产生在细菌种群的通讯和细菌-宿主相互作用中起重要作用。作为各种调节和信号分子的载体的囊泡可能潜在地用作疾病生物标志物和有前途的治疗剂。包括疫苗制剂。对于有限数量的革兰氏阴性和革兰氏阳性细菌,已经破译了膜囊泡的组成。在这项工作中,第一次,链霉素抗性菌株的细胞外膜囊泡短小芽孢杆菌3-19,细胞外鸟苷酸偏好核糖核酸酶的生产者,是孤立的,可视化,并以它们的基因组和蛋白质组组成为特征。已经确定,囊泡中没有遗传物质,并且蛋白质的光谱根据菌株培养基中的磷酸盐含量而有所不同。来自缺乏磷酸盐的培养基的囊泡携带49种独特的蛋白质,而来自高磷酸盐含量的培养基的囊泡则携带101种。这两种类型的囊泡具有140个相互的蛋白质。鞭毛蛋白,RNaseJ,它是RNA降解体的主要酶,磷酸酶,肽酶,铁运输机,信号肽,在囊泡中被发现。其基因存在于短小芽孢杆菌3-19细胞中的抗生素抗性蛋白和淀粉样蛋白不存在。仅在磷酸盐缺乏培养基的囊泡中发现了磷酸盐缺乏诱导的结合酶。
    Production of extracellular membrane vesicles plays an important role in communication in bacterial populations and in bacteria-host interactions. Vesicles as carriers of various regulatory and signaling molecules may be potentially used as disease biomarkers and promising therapeutic agents, including vaccine preparations. The composition of membrane vesicles has been deciphered for a limited number of Gram-negative and Gram-positive bacteria. In this work, for the first time, extracellular membrane vesicles of a streptomycin-resistant strain Bacillus pumilus 3-19, a producer of extracellular guanyl-preferring ribonuclease binase, are isolated, visualized, and characterized by their genome and proteome composition. It has been established that there is no genetic material in the vesicles and the spectrum of the proteins differs depending on the phosphate content in the culture medium of the strain. Vesicles from a phosphate-deficient medium carry 49 unique proteins in comparison with 101 from a medium with the high phosphate content. The two types of vesicles had 140 mutual proteins. Flagellar proteins, RNase J, which is the main enzyme of RNA degradosomes, phosphatases, peptidases, iron transporters, signal peptides, were identified in vesicles. Antibiotic resistance proteins and amyloid-like proteins whose genes are present in B. pumilus 3-19 cells are absent. Phosphate deficiency-induced binase was found only in vesicles from a phosphate-deficient medium.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The contamination of infant milk and powder with Enterobacter sakazakii poses a risk to human health and frequently caused recalls of affected products. This study aims to explore the inactivation mechanism of E. sakazakii induced by high hydrostatic pressure (HHP), which, unlike conventional heat treatment, is a nonthermal technique for pasteurization and sterilization of dairy food without deleterious effects. The mortality of E. sakazakii under minimum reaction conditions (50 MPa) was 1.42%, which was increased to 33.12% under significant reaction conditions (400 MPa). Scanning electron microscopy (SEM) and fluorescent staining results showed that 400 MPa led to a loss of physical integrity of cell membranes as manifested by more intracellular leakage of nucleic acid, intracellular protein and K+. Real-time quantitative PCR (RT-qPCR) analysis presents a downregulation of three functional genes (glpK, pbpC, and ompR), which were involved in cell membrane formation, indicating a lower level of glycerol utilization, outer membrane protein assembly, and environmental tolerance. In addition, the exposure of E. sakazakii to HHP modified oxidative stress, as reflected by the high activity of catalase and super oxide dismutase. The HHP treatment lowered down the gene expression of flagellar proteins (fliC, flgI, fliH, and flgK) and inhibited biofilm formation. These results determined the association of genotype to phenotype in E. sakazakii induced by HHP, which was used for the control of food-borne pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Conventional immunoblot assays are a useful tool for specific protein identification, but tedious, labor-intensive and time-consuming. A capillary electrophoresis-based immunoblot assay so-called \"Simple Western\" was developed to enable the protein identification in an automatic manner. This communication describes the use of Simple Western for detecting anti-Salmonella FlgK antibodies from chicken sera.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    几个运动过程负责蛋白质进入和进入鞭毛膜,但是对特定蛋白质(肌动蛋白相关或不相关)靶向原生动物鞭毛膜的过程知之甚少。肌动蛋白是一种主要的细胞骨架蛋白,而寄生虫肌动蛋白和肌动蛋白相互作用蛋白(AIP)在运动和宿主细胞进入过程中的聚合和解聚可能是成功感染的关键事件。为了更好地理解真核鞭毛动力学,我们已经调查了基因组,致病性利什曼原虫的转录组和蛋白质组。鉴定相关基因/蛋白质,并建立计算机模型,以适当解决它们在锥虫虫毒力中的假定作用。在寻找涉及鞭毛活动的AIP时,我们应用计算生物学和蛋白质组学工具,从巨噬细胞吞噬寄生虫后吞噬体形成的两个重要元素——冠蛋白和Arp2/3的生物学意义推断。此处介绍的结果提供了利什曼原虫冠状蛋白和Arp2/3作为鞭毛蛋白的第一份报告,它们也可能通过鞭毛环境中的肌动蛋白聚合参与吞噬体的形成。这是一个值得进一步体外检查的问题,现在仍然是一个直接的问题,提出积极的生物信息学推断。
    Several motile processes are responsible for the movement of proteins into and within the flagellar membrane, but little is known about the process by which specific proteins (either actin-associated or not) are targeted to protozoan flagellar membranes. Actin is a major cytoskeleton protein, while polymerization and depolymerization of parasite actin and actin-interacting proteins (AIPs) during both processes of motility and host cell entry might be key events for successful infection. For a better understanding the eukaryotic flagellar dynamics, we have surveyed genomes, transcriptomes and proteomes of pathogenic Leishmania spp. to identify pertinent genes/proteins and to build in silico models to properly address their putative roles in trypanosomatid virulence. In a search for AIPs involved in flagellar activities, we applied computational biology and proteomic tools to infer from the biological meaning of coronins and Arp2/3, two important elements in phagosome formation after parasite phagocytosis by macrophages. Results presented here provide the first report of Leishmania coronin and Arp2/3 as flagellar proteins that also might be involved in phagosome formation through actin polymerization within the flagellar environment. This is an issue worthy of further in vitro examination that remains now as a direct, positive bioinformatics-derived inference to be presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号