关键词: Dzyaloshinskii–Moriya interaction logic magnetic domain wall magnetic tunnel junction spin-orbit torque spin-transfer torque

来  源:   DOI:10.3390/mi15060696   PDF(Pubmed)

Abstract:
Spintronics, utilizing both the charge and spin of electrons, benefits from the nonvolatility, low switching energy, and collective behavior of magnetization. These properties allow the development of magnetoresistive random access memories, with magnetic tunnel junctions (MTJs) playing a central role. Various spin logic concepts are also extensively explored. Among these, spin logic devices based on the motion of magnetic domain walls (DWs) enable the implementation of compact and energy-efficient logic circuits. In these devices, DW motion within a magnetic track enables spin information processing, while MTJs at the input and output serve as electrical writing and reading elements. DW logic holds promise for simplifying logic circuit complexity by performing multiple functions within a single device. Nevertheless, the demonstration of DW logic circuits with electrical writing and reading at the nanoscale is still needed to unveil their practical application potential. In this review, we discuss material advancements for high-speed DW motion, progress in DW logic devices, groundbreaking demonstrations of current-driven DW logic, and its potential for practical applications. Additionally, we discuss alternative approaches for current-free information propagation, along with challenges and prospects for the development of DW logic.
摘要:
自旋电子学,利用电子的电荷和自旋,受益于非波动性,低开关能量,和集体磁化行为。这些特性允许磁阻随机存取存储器的发展,磁性隧道结(MTJ)起着核心作用。还广泛探索了各种自旋逻辑概念。其中,基于磁畴壁(DW)运动的自旋逻辑器件使得能够实现紧凑且节能的逻辑电路。在这些设备中,磁轨内的DW运动使自旋信息处理成为可能,而输入和输出的MTJ用作电子写入和读取元件。DW逻辑有望通过在单个器件内执行多个功能来简化逻辑电路复杂性。然而,仍需要演示具有纳米级电子写入和读取功能的DW逻辑电路,以揭示其实际应用潜力。在这次审查中,我们讨论了高速DW运动的材料进步,DW逻辑器件的进展,电流驱动的DW逻辑的开创性演示,及其实际应用的潜力。此外,我们讨论了无电流信息传播的替代方法,以及DW逻辑发展的挑战和前景。
公众号