spin-orbit torque

自旋轨道转矩
  • 文章类型: Journal Article
    在过去的几十年里,反铁磁自旋电子学的多样化发展使反铁磁体(AFM)变得有趣且非常有用。在艰难的挑战之后,AFM在电子设备中的应用已经从专注于接口耦合特征过渡到实现AFM的操纵和检测。充分利用AFM进行信息存储一直是研究的主要目标。在本文中,我们从接口耦合方面全面介绍了AFM自旋电子学应用,读出操作,和写作操作视角。我们研究了AFM在磁记录和常规磁阻随机存取存储器(MRAM)中的早期使用,并回顾了操纵和检测AFM的最新机制。最后,基于交换偏差(EB)操纵,引入高性能EB-MRAM作为下一代基于AFM的存储器,这为AFM的读出和写入提供了一种有效的方法,为AFM自旋电子学开辟了新的时代。
    Over the past few decades, the diversified development of antiferromagnetic spintronics has made antiferromagnets (AFMs) interesting and very useful. After tough challenges, the applications of AFMs in electronic devices have transitioned from focusing on the interface coupling features to achieving the manipulation and detection of AFMs. As AFMs are internally magnetic, taking full use of AFMs for information storage has been the main target of research. In this paper, we provide a comprehensive description of AFM spintronics applications from the interface coupling, read-out operations, and writing manipulations perspective. We examine the early use of AFMs in magnetic recordings and conventional magnetoresistive random-access memory (MRAM), and review the latest mechanisms of the manipulation and detection of AFMs. Finally, based on exchange bias (EB) manipulation, a high-performance EB-MRAM is introduced as the next generation of AFM-based memories, which provides an effective method for read-out and writing of AFMs and opens a new era for AFM spintronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自旋电子学,利用电子的电荷和自旋,受益于非波动性,低开关能量,和集体磁化行为。这些特性允许磁阻随机存取存储器的发展,磁性隧道结(MTJ)起着核心作用。还广泛探索了各种自旋逻辑概念。其中,基于磁畴壁(DW)运动的自旋逻辑器件使得能够实现紧凑且节能的逻辑电路。在这些设备中,磁轨内的DW运动使自旋信息处理成为可能,而输入和输出的MTJ用作电子写入和读取元件。DW逻辑有望通过在单个器件内执行多个功能来简化逻辑电路复杂性。然而,仍需要演示具有纳米级电子写入和读取功能的DW逻辑电路,以揭示其实际应用潜力。在这次审查中,我们讨论了高速DW运动的材料进步,DW逻辑器件的进展,电流驱动的DW逻辑的开创性演示,及其实际应用的潜力。此外,我们讨论了无电流信息传播的替代方法,以及DW逻辑发展的挑战和前景。
    Spintronics, utilizing both the charge and spin of electrons, benefits from the nonvolatility, low switching energy, and collective behavior of magnetization. These properties allow the development of magnetoresistive random access memories, with magnetic tunnel junctions (MTJs) playing a central role. Various spin logic concepts are also extensively explored. Among these, spin logic devices based on the motion of magnetic domain walls (DWs) enable the implementation of compact and energy-efficient logic circuits. In these devices, DW motion within a magnetic track enables spin information processing, while MTJs at the input and output serve as electrical writing and reading elements. DW logic holds promise for simplifying logic circuit complexity by performing multiple functions within a single device. Nevertheless, the demonstration of DW logic circuits with electrical writing and reading at the nanoscale is still needed to unveil their practical application potential. In this review, we discuss material advancements for high-speed DW motion, progress in DW logic devices, groundbreaking demonstrations of current-driven DW logic, and its potential for practical applications. Additionally, we discuss alternative approaches for current-free information propagation, along with challenges and prospects for the development of DW logic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    具有破坏的反转对称性的二维层状材料被广泛追求作为自旋轨道耦合层,以实现高效的磁开关。这样的低对称性分层系统是,然而,稀缺。此外,大多数具有垂直磁各向异性的层状磁体显示出低居里温度。这里,我们报道了在室温下层状极性铁磁金属中自旋轨道转矩磁化自切换的实验观察,Fe2.5Co2.5GeTe2。自旋轨道转矩是由沿晶体c轴的反转对称性破坏而产生的。我们的结果为适用的二维自旋电子器件提供了直接途径。本文受版权保护。保留所有权利。
    2D layered materials with broken inversion symmetry are being extensively pursued as  spin source layers to realize high-efficiency magnetic switching. Such low-symmetry layered systems are, however, scarce. In addition, most layered magnets with perpendicular magnetic anisotropy show a low Curie temperature. Here, the experimental observation of spin-orbit torque magnetization self-switching at room temperature in a layered polar ferromagnetic metal, Fe2.5 Co2.5 GeTe2 is reported. The spin-orbit torque is generated from the broken inversion symmetry along the c-axis of the crystal. These results provide a direct pathway toward applicable 2D spintronic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于Mermin-Wanger理论中提出的机制,在非零有限温度下二维(2D)各向同性系统的热波动可能会破坏长程(LR)磁阶。然而,与自旋轨道耦合(SOC)相关的磁各向异性可以稳定2D系统中的磁序。最近,具有高居里温度(TC)的2DFexGeTe2(3≤x≤7)不仅在合成方法和铁磁性(FM)控制方面取得了重大进展,但也正在积极探索在各种设备中的应用。在这次审查中,我们介绍了六种实验方法,十种铁磁调制策略,和四个用于2DFexGeTe2材料的自旋电子器件。总之,我们概述了该领域的挑战和潜在的研究方向。
    Thermal fluctuations in two-dimensional (2D) isotropy systems at non-zero finite temperatures can destroy the long-range (LR) magnetic order due to the mechanisms addressed in the Mermin-Wanger theory. However, the magnetic anisotropy related to spin-orbit coupling (SOC) may stabilize magnetic order in 2D systems. Very recently, 2D FexGeTe2 (3 ≤ x ≤ 7) with a high Curie temperature (TC) has not only undergone significant developments in terms of synthetic methods and the control of ferromagnetism (FM), but is also being actively explored for applications in various devices. In this review, we introduce six experimental methods, ten ferromagnetic modulation strategies, and four spintronic devices for 2D FexGeTe2 materials. In summary, we outline the challenges and potential research directions in this field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    具有原子薄且光滑的界面的范德华(vdW)磁体的新兴品种为下一代自旋电子器件带来了巨大的希望。然而,由于vdW铁磁体的居里温度低于室温,在室温下电操纵其磁化尚未实现。在这项工作中,我们证明了vdW铁磁体Fe3GaTe2的垂直磁化可以在室温下通过自旋轨道转矩(SOTs)在Fe3GaTe2/Pt双层中有效地切换,电流密度相对较低,为1.3×107A/cm2。此外,通过谐波测量来定量确定ζDL~0.28${\\xi}_{DL}\\sim0.28$的高SOT效率,高于Pt基重金属/常规铁磁体器件。我们通过SOT进行室温vdW铁磁体切换的发现为基于vdW-铁磁体的自旋电子应用的开发提供了重要基础。本文受版权保护。保留所有权利。
    The emerging wide varieties of the van der Waals (vdW) magnets with atomically thin and smooth interfaces hold great promise for next-generation spintronic devices. However, due to the lower Curie temperature of the vdW ferromagnets than room temperature, electrically manipulating its magnetization at room temperature has not been realized. In this work, it is demonstrated that the perpendicular magnetization of the vdW ferromagnet Fe3 GaTe2 can be effectively switched at room temperature in the Fe3 GaTe2 /Pt bilayer by spin-orbit torques (SOTs) with a relatively low current density of 1.3 × 107 A cm-2 . Moreover, the high SOT efficiency of ξDL ≈ 0.28 is quantitatively determined by harmonic measurements, which is higher than those in Pt-based heavy metal/conventional ferromagnet devices. The findings of room-temperature vdW ferromagnet switching by SOTs provide a significant basis for the development of vdW-ferromagnet-based spintronic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非易失性磁阻随机存取存储器(MRAM)被认为可以促进新兴应用,例如内存计算,神经形态计算和随机计算。二维(2D)材料及其范德华异质结构促进了MRAM技术的发展,由于其原子光滑的界面和可调的物理性质。在这里,我们报告了基于WTe2/Fe3GaTe2/BN/Fe3GaTe2异质结构的室温下全电数据读写的全2D磁阻存储器。数据读取过程依赖于Fe3GaTe2/BN/Fe3GaTe2的隧道磁阻。数据写入是通过WTe2中轨道磁矩的电流感应极化来实现的,该极化在Fe3GaTe2上施加扭矩,称为轨道转移扭矩(OTT)效应。与传统的依赖自旋转移力矩和自旋轨道力矩相反,OTT效应利用了自然的平面外轨道力矩,通过界面电流促进无场垂直磁化切换。我们的结果表明,新兴的OTT-MRAM有望用于低功耗,高性能内存应用。
    The non-volatile magnetoresistive random access memory (MRAM) is believed to facilitate emerging applications, such as in-memory computing, neuromorphic computing and stochastic computing. Two-dimensional (2D) materials and their van der Waals heterostructures promote the development of MRAM technology, due to their atomically smooth interfaces and tunable physical properties. Here we report the all-2D magnetoresistive memories featuring all-electrical data reading and writing at room temperature based on WTe2/Fe3GaTe2/BN/Fe3GaTe2 heterostructures. The data reading process relies on the tunnel magnetoresistance of Fe3GaTe2/BN/Fe3GaTe2. The data writing is achieved through current induced polarization of orbital magnetic moments in WTe2, which exert torques on Fe3GaTe2, known as the orbit-transfer torque (OTT) effect. In contrast to the conventional reliance on spin moments in spin-transfer torque and spin-orbit torque, the OTT effect leverages the natural out-of-plane orbital moments, facilitating field-free perpendicular magnetization switching through interface currents. Our results indicate that the emerging OTT-MRAM is promising for low-power, high-performance memory applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铋(Bi)在非放射性元素中具有最强的自旋轨道耦合,因此是有效的电荷到自旋转换的有前途的材料。然而,以前的电气检测报告了有争议的转换效率的结果。在这项研究中,在具有(012)和(003)多晶织构的Bi/CoFeB双层中报道了自旋轨道转矩的光学检测。利用光学检测,自旋轨道转矩与奥斯特磁场精确分离,并实现了+0.5的巨大阻尼样转矩效率,验证了电荷到自旋的有效转换。这项研究还证明了-0.1的场状扭矩效率。对于电荷到自旋转换的机制,考虑了体自旋霍尔效应和界面Rashba-Edelstein效应。
    Bismuth (Bi) has the strongest spin-orbit coupling among non-radioactive elements and is thus a promising material for efficient charge-to-spin conversion. However, previous electrical detections have reported controversial results for the conversion efficiency. In this study, an optical detection of a spin-orbit torque is reported in a Bi/CoFeB bilayer with a polycrystalline texture of (012) and (003). Taking advantage of the optical detection, spin-orbit torque is accurately separated from the Oersted field and achieves a giant damping-like torque efficiency of +0.5, verifying efficient charge-to-spin conversion. This study also demonstrates a field-like torque efficiency of -0.1. For the mechanism of the charge-to-spin conversion, the bulk spin Hall effect and the interface Rashba-Edelstein effect are considered.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究研究了一种T型无场自旋轨道转矩(SOT)器件,该器件具有通过非磁性垫片耦合到垂直磁性层的面内磁性层。该器件采用Co/Ta/CoTb结构,其中面内Co层和垂直CoTb层通过Ta间隔物铁磁耦合。“T型”是指FM/间隔物/FIM结构中的磁化排列,其中FM中的磁化强度是平面内的,在FIM中,它在飞机外。这种构造形成了用于两个磁性层的磁化的T形布置。此外,“层间交换耦合”表示两个磁性层之间的相互作用,这是通过调整垫片的材料和厚度来实现的。我们的结果表明,来自层间交换耦合(IEC)的面内有效场可以实现CoTb层的确定性电流感应磁化切换。观察到场驱动和电流驱动的非对称畴壁运动,并通过磁光克尔效应(MOKE)测量来表征。通过理解异常霍尔电阻与施加的电流脉冲之间的关系,证明了多状态突触可塑性的功能。表明该设备在自旋电子记忆和神经形态计算中的潜力。
    This study investigates a T-type field-free spin-orbit torque device with an in-plane magnetic layer coupled to a perpendicular magnetic layer via a non-magnetic spacer. The device utilizes a Co/Ta/CoTb structure, in which the in-plane Co layer and the perpendicular CoTb layer are ferromagnetically (FM) coupled through the Ta spacer. \'T-type\' refers to the magnetization arrangement in the FM/spacer/FIM structure, where the magnetization in FM is in-plane, while in FIM, it is out-of-plane. This configuration forms a T-shaped arrangement for the magnetization of the two magnetic layers. Additionally, \'interlayer exchange coupling (IEC)\' denotes the interaction between the two magnetic layers, which is achieved by adjusting the material and thickness of the spacer. Our results show that an in-plane effective field from the IEC enables deterministic current-induced magnetization switching of the CoTb layer. The field-driven and the current-driven asymmetric domain wall motion are observed and characterized by magneto-optic Kerr effect measurements. The functionality of multistate synaptic plasticity is demonstrated by understanding the relationship between the anomalous Hall resistance and the applied current pulses, indicating the potential for the device in spintronic memory and neuromorphic computing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了实现用于磁化切换的自旋轨道转矩(SOT)的期望大小,并利用SOT实现多功能自旋逻辑和存储器件,控制SOT操作至关重要。在传统的SOT双层系统中,研究人员试图通过界面氧化来控制磁化转换行为,自旋轨道有效场的调制,和有效自旋霍尔角;然而,切换效率受到接口质量的限制。具有强自旋轨道相互作用的单层铁磁体中的电流感应有效磁场,所谓的自旋轨道铁磁体,可用于诱导SOT。在自旋轨道铁磁体系统中,电场应用具有通过载流子浓度调制来操纵自旋轨道相互作用的潜力。在这项工作中,证明了SOT磁化切换可以通过使用(Ga,Mn)作为单层。通过施加栅极电压,可以以14.5%的大比例稳定和可逆地操纵开关电流密度,这归因于界面电场的成功调制。这项工作的发现有助于进一步了解磁化切换机制,并促进栅极控制SOT器件的发展。
    To achieve a desirable magnitude of spin-orbit torque (SOT) for magnetization switching and realize multifunctional spin logic and memory devices utilizing SOT, controlling the SOT manipulation is vitally important. In conventional SOT bilayer systems, researchers have tried to control the magnetization switching behavior via interfacial oxidization, modulation of spin-orbit effective field, and effective spin Hall angle; however, the switching efficiency is limited by the interface quality. A current-induced effective magnetic field in a single layer of a ferromagnet with strong spin-orbit interactions, the so-called spin-orbit ferromagnet, can be utilized to induce SOT. In spin-orbit ferromagnet systems, electric field application has the potential for manipulating the spin-orbit interactions via carrier concentration modulation. In this work, it is demonstrated that SOT magnetization switching can be successfully controlled via an external electric field using a (Ga, Mn)As single layer. By applying a gate voltage, the switching current density can be solidly and reversibly manipulated with a large ratio of 14.5%, which is ascribed to the successful modulation of the interfacial electric field. The findings of this work help further the understanding of the magnetization switching mechanism and advance the development of gate-controlled SOT devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    拓扑绝缘体(TI)的巨自旋轨道转矩(SOT)对于低功耗SOT驱动的磁随机存取存储器(SOT-MRAM)具有巨大的潜力。这里,我们通过将TI[(BiSb)2Te3]与垂直磁隧道结(pMTJ)集成在一起,演示了功能3端SOT-MRAM器件,其中隧道磁阻用于有效的读取方法。在室温下,TI-pMTJ器件实现了1.5×105Acm-2的超低切换电流密度,比传统的重金属系统低1-2个数量级,由于(BiSb)2Te3的SOT效率高,θSH=1.16。此外,在SOT过程中,通过小的自旋转移力矩电流的协同效应实现了无电场写入。热稳定性因子(Δ=66)示出了TI-pMTJ器件的高保留时间(>10年)。这项工作为未来的低功耗,高密度,和基于量子材料的高耐久/保留磁存储器技术。本文受版权保护。保留所有权利。
    Giant spin-orbit torque (SOT) from topological insulators (TIs) has great potential for low-power SOT-driven magnetic random-access memory (SOT-MRAM). In this work, a functional 3-terminal SOT-MRAM device is demonstrated by integrating the TI [(BiSb)2 Te3 ] with perpendicular magnetic tunnel junctions (pMTJs), where the tunneling magnetoresistance is employed for the effective reading method. An ultralow switching current density of 1.5 × 105  A cm-2 is achieved in the TI-pMTJ device at room temperature, which is 1-2 orders of magnitude lower than that in conventional heavy-metals-based systems, due to the high SOT efficiency θSH = 1.16 of (BiSb)2 Te3 . Furthermore, all-electrical field-free writing is realized by the synergistic effect of a small spin-transfer torque current during the SOT. The thermal stability factor (Δ = 66) shows the high retention time (>10 years) of the TI-pMTJ device. This work sheds light to the future low-power, high-density, and high-endurance/retention magnetic memory technology based on quantum materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号