magnetic tunnel junction

  • 文章类型: Journal Article
    自旋电子学,利用电子的电荷和自旋,受益于非波动性,低开关能量,和集体磁化行为。这些特性允许磁阻随机存取存储器的发展,磁性隧道结(MTJ)起着核心作用。还广泛探索了各种自旋逻辑概念。其中,基于磁畴壁(DW)运动的自旋逻辑器件使得能够实现紧凑且节能的逻辑电路。在这些设备中,磁轨内的DW运动使自旋信息处理成为可能,而输入和输出的MTJ用作电子写入和读取元件。DW逻辑有望通过在单个器件内执行多个功能来简化逻辑电路复杂性。然而,仍需要演示具有纳米级电子写入和读取功能的DW逻辑电路,以揭示其实际应用潜力。在这次审查中,我们讨论了高速DW运动的材料进步,DW逻辑器件的进展,电流驱动的DW逻辑的开创性演示,及其实际应用的潜力。此外,我们讨论了无电流信息传播的替代方法,以及DW逻辑发展的挑战和前景。
    Spintronics, utilizing both the charge and spin of electrons, benefits from the nonvolatility, low switching energy, and collective behavior of magnetization. These properties allow the development of magnetoresistive random access memories, with magnetic tunnel junctions (MTJs) playing a central role. Various spin logic concepts are also extensively explored. Among these, spin logic devices based on the motion of magnetic domain walls (DWs) enable the implementation of compact and energy-efficient logic circuits. In these devices, DW motion within a magnetic track enables spin information processing, while MTJs at the input and output serve as electrical writing and reading elements. DW logic holds promise for simplifying logic circuit complexity by performing multiple functions within a single device. Nevertheless, the demonstration of DW logic circuits with electrical writing and reading at the nanoscale is still needed to unveil their practical application potential. In this review, we discuss material advancements for high-speed DW motion, progress in DW logic devices, groundbreaking demonstrations of current-driven DW logic, and its potential for practical applications. Additionally, we discuss alternative approaches for current-free information propagation, along with challenges and prospects for the development of DW logic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项工作中,我们重点研究了磁性隧道结(MTJ)多层结构中每个组件层的作用,并分析了薄膜沉积参数对结构性能的影响。各种技术,包括原子力显微镜(AFM),扫描电子显微镜(SEM),和透射电子显微镜(TEM)用于研究沉积参数对MTJ结构内各个层的表面粗糙度和厚度的影响。此外,这项研究调查了薄膜厚度对MTJ结构的磁阻特性的影响,重点研究了自由铁磁层和势垒层(MgO)。通过对沉积参数的系统分析和优化,这项研究表明,MTJ结构的隧道磁阻(TMR)平均有10%的显着改善,强调精确控制薄膜性能对提高器件性能的重要性。
    In this work, we focus on a detailed study of the role of each component layer in the multilayer structure of a magnetic tunnel junction (MTJ) as well as the analysis of the effects that the deposition parameters of the thin films have on the performance of the structure. Various techniques including atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate the effects of deposition parameters on the surface roughness and thickness of individual layers within the MTJ structure. Furthermore, this study investigates the influence of thin films thickness on the magnetoresistive properties of the MTJ structure, focusing on the free ferromagnetic layer and the barrier layer (MgO). Through systematic analysis and optimization of the deposition parameters, this study demonstrates a significant improvement in the tunnel magnetoresistance (TMR) of the MTJ structure of 10% on average, highlighting the importance of precise control over thin films properties for enhancing device performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    六方氮化硼(hBN),宽间隙二维(2D)绝缘子,由于原子平坦的表面,是许多应用的理想隧道势垒,晶体质量高,和高稳定性。厚度为1-2nm的少层hBN是电子隧穿的有效势垒,但是少层hBN的制备依赖于块状hBN晶体的机械剥离。这里,我们报道了通过化学气相沉积在铁磁Ni-Fe薄膜上的少层hBN的大面积生长及其在磁隧道结(MTJ)器件的隧道势垒中的应用。在Ni-Fe催化剂上在1200°C的高生长温度下成功合成了主要由两到三层组成的少层hBN片。MTJ器件是通过使用Ni-Fe膜作为底部铁磁电极在生长的hBN上制造的,以避免污染和表面氧化。我们发现三层hBN比双层hBN具有更高的隧道磁阻(TMR)比,导致高达10%的高TMR比率
    Hexagonal boron nitride (hBN), a wide-gap two-dimensional (2D) insulator, is an ideal tunneling barrier for many applications because of the atomically flat surface, high crystalline quality, and high stability. Few-layer hBN with a thickness of 1-2 nm is an effective barrier for electron tunneling, but the preparation of few-layer hBN relies on mechanical exfoliation from bulk hBN crystals. Here, we report the large-area growth of few-layer hBN by chemical vapor deposition on ferromagnetic Ni-Fe thin films and its application to tunnel barriers of magnetic tunnel junction (MTJ) devices. Few-layer hBN sheets mainly consisting of two to three layers have been successfully synthesized on a Ni-Fe catalyst at a high growth temperature of 1200 °C. The MTJ devices were fabricated on as-grown hBN by using the Ni-Fe film as the bottom ferromagnetic electrode to avoid contamination and surface oxidation. We found that trilayer hBN gives a higher tunneling magnetoresistance (TMR) ratio than bilayer hBN, resulting in a high TMR ratio up to 10% at ∼10 K.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自旋轨道扭矩(SOT)允许超快,对于诸如磁性随机存取存储器(SOT-MRAM)的应用,通过平面内充电电流来高效地切换磁化状态。定制包括抗阻尼(TAD)和场状(TFL)扭矩的SOT矢量可能会导致更快,更可靠,和低功耗SOT-MRAM。这里,我们建立了一种量化SOT矢量的纵向(TAD)和横向(TFL)分量及其效率χAD和χFL的方法,分别,在纳米级三端SOT磁性隧道结(SOT-MTJ)。通过SOT有效场(BSOT)对成核或切换场(BSF)进行磁化反转的调制会导致SOT-MTJ磁滞回线行为的改变,从中可以量化χAD和χFL。令人惊讶的是,在纳米级W/CoFeBSOT-MTJ中,我们发现,在微米尺寸的W/CoFeB霍尔棒设备中,χFL(i)是χAD的两倍,(ii)是χFL的6倍。我们的量化得到了微磁和宏自旋模拟的支持,这些模拟仅针对χFL>χAD再现了SOT-MTJStoner-Wohlfarth星形线行为。此外,从具有横向磁场的电流感应磁化切换的阈值电流,我们表明,在SOT-MTJ中,TFL在磁化动力学中的作用比TAD更为突出。由于SOT-MRAM的几何形状和纳米尺寸,SOT-MTJ附近积累的非局部自旋霍尔自旋电流在介导TFL和χFL扩增中的潜在作用有待探索。
    Spin-orbit torques (SOT) allow ultrafast, energy-efficient toggling of magnetization state by an in-plane charge current for applications such as magnetic random-access memory (SOT-MRAM). Tailoring the SOT vector comprising of antidamping (TAD) and fieldlike (TFL) torques could lead to faster, more reliable, and low-power SOT-MRAM. Here, we establish a method to quantify the longitudinal (TAD) and transverse (TFL) components of the SOT vector and its efficiency χAD and χFL, respectively, in nanoscale three-terminal SOT magnetic tunnel junctions (SOT-MTJ). Modulation of nucleation or switching field (BSF) for magnetization reversal by SOT effective fields (BSOT) leads to the modification of SOT-MTJ hysteresis loop behavior from which χAD and χFL are quantified. Surprisingly, in nanoscale W/CoFeB SOT-MTJ, we find χFL to be (i) twice as large as χAD and (ii) 6 times as large as χFL in micrometer-sized W/CoFeB Hall-bar devices. Our quantification is supported by micromagnetic and macrospin simulations which reproduce experimental SOT-MTJ Stoner-Wohlfarth astroid behavior only for χFL > χAD. Additionally, from the threshold current for current-induced magnetization switching with a transverse magnetic field, we show that in SOT-MTJ, TFL plays a more prominent role in magnetization dynamics than TAD. Due to SOT-MRAM geometry and nanodimensionality, the potential role of nonlocal spin Hall spin current accumulated adjacent to the SOT-MTJ in the mediation of TFL and χFL amplification merits to be explored.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磁随机存取存储器(MRAM),通过控制磁化方向来存储信息,作为可行的非易失性存储器替代品,提供了有前途的功能,包括高耐力和成功的大规模商业化。最近,MRAM应用程序已经扩展到传统存储器之外,在新兴的计算架构中找到效用,如内存计算和概率位。在这项工作中,我们报告高度可靠的基于MRAM的安全设备,称为物理不可克隆函数(PUF),通过利用纳米级垂直磁隧道结(MTJ)实现。通过有意地随机化MTJ的反铁磁耦合参考层的磁化方向,我们成功地创建了一个MRAM-PUF。提出的PUF显示出理想的均匀性和独特性,特别是,在-40至+150°C的宽温度范围内保持性能。此外,对超过1584个64位的挑战-响应对进行严格的测试,每个测试都证实了对机器学习攻击的弹性。这些结果,结合商业化MRAM技术的优点,将促进MRAM-PUF的实现。
    Magnetic random-access memory (MRAM), which stores information through control of the magnetization direction, offers promising features as a viable nonvolatile memory alternative, including high endurance and successful large-scale commercialization. Recently, MRAM applications have extended beyond traditional memories, finding utility in emerging computing architectures such as in-memory computing and probabilistic bits. In this work, we report highly reliable MRAM-based security devices, known as physical unclonable functions (PUFs), achieved by exploiting nanoscale perpendicular magnetic tunnel junctions (MTJs). By intentionally randomizing the magnetization direction of the antiferromagnetically coupled reference layer of the MTJs, we successfully create an MRAM-PUF. The proposed PUF shows ideal uniformity and uniqueness and, in particular, maintains performance over a wide temperature range from -40 to +150 °C. Moreover, rigorous testing with more than 1584 challenge-response pairs of 64 bits each confirms resilience against machine learning attacks. These results, combined with the merits of commercialized MRAM technology, would facilitate the implementation of MRAM-PUFs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    范德华层状磁性材料和超导材料之间的耦合为揭示新的物理机制和实现具有新功能的自旋电子器件提供了可能性。这里,我们报告了基于NbSe2层超导临界温度(TC)附近的Fe3GeTe2(FGT)/NbSe2/FGT的垂直磁隧道结的最大〜17倍磁阻(MR)增强的实现和研究。6.8K。这种增强归因于由材料界面上的磁邻近效应引起的原子薄NbSe2间隔层的能带分裂。然而,在厚的NbSe2层中,层间耦合强烈抑制了能带分裂。相应地,例如,具有厚NbSe2层的器件在TC附近没有显示MR增加,但是在极低温度下电流依赖于传输性质。这项工作仔细研究了MR增强的机制,为自旋电子学特性的调制和基于自旋的集成电路的实现铺平了一条有效的道路。
    The coupling between van der Waals-layered magnetic and superconducting materials holds the possibility of revealing novel physical mechanisms and realizing spintronic devices with new functionalities. Here, we report on the realization and investigation of a maximum ∼17-fold magnetoresistance (MR) enhancement based on a vertical magnetic tunnel junction of Fe3GeTe2 (FGT)/NbSe2/FGT near the NbSe2 layer\'s superconducting critical temperature (TC) of 6.8 K. This enhancement is attributed to the band splitting in the atomically thin NbSe2 spacer layer induced by the magnetic proximity effect on the material interfaces. However, the band splitting is strongly suppressed by the interlayer coupling in the thick NbSe2 layer. Correspondingly, the device with a thick NbSe2 layer displays no MR increase near TC but a current dependent on transport properties at extremely low temperatures. This work carefully investigates the mechanism of MR enhancement, paving an efficient way for the modulation of spintronics\' properties and the achievement of spin-based integrated circuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非易失性磁阻随机存取存储器(MRAM)被认为可以促进新兴应用,例如内存计算,神经形态计算和随机计算。二维(2D)材料及其范德华异质结构促进了MRAM技术的发展,由于其原子光滑的界面和可调的物理性质。在这里,我们报告了基于WTe2/Fe3GaTe2/BN/Fe3GaTe2异质结构的室温下全电数据读写的全2D磁阻存储器。数据读取过程依赖于Fe3GaTe2/BN/Fe3GaTe2的隧道磁阻。数据写入是通过WTe2中轨道磁矩的电流感应极化来实现的,该极化在Fe3GaTe2上施加扭矩,称为轨道转移扭矩(OTT)效应。与传统的依赖自旋转移力矩和自旋轨道力矩相反,OTT效应利用了自然的平面外轨道力矩,通过界面电流促进无场垂直磁化切换。我们的结果表明,新兴的OTT-MRAM有望用于低功耗,高性能内存应用。
    The non-volatile magnetoresistive random access memory (MRAM) is believed to facilitate emerging applications, such as in-memory computing, neuromorphic computing and stochastic computing. Two-dimensional (2D) materials and their van der Waals heterostructures promote the development of MRAM technology, due to their atomically smooth interfaces and tunable physical properties. Here we report the all-2D magnetoresistive memories featuring all-electrical data reading and writing at room temperature based on WTe2/Fe3GaTe2/BN/Fe3GaTe2 heterostructures. The data reading process relies on the tunnel magnetoresistance of Fe3GaTe2/BN/Fe3GaTe2. The data writing is achieved through current induced polarization of orbital magnetic moments in WTe2, which exert torques on Fe3GaTe2, known as the orbit-transfer torque (OTT) effect. In contrast to the conventional reliance on spin moments in spin-transfer torque and spin-orbit torque, the OTT effect leverages the natural out-of-plane orbital moments, facilitating field-free perpendicular magnetization switching through interface currents. Our results indicate that the emerging OTT-MRAM is promising for low-power, high-performance memory applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    手性诱导的自旋选择性(CISS)是最近发现的一种效应,其中结构手性可以导致具有相反自旋的电子具有不同的电导率。在CI党卫军社区,自旋极化的程度通常用于描述自旋滤波/极化过程的效率,因为它代表源自非自旋极化电流的手性材料的手性轴排列的自旋部分。然而,定义的方法,计算,在各种研究中,分析自旋极化是不一致的,阻碍了这一领域的发展。从这个角度来看,我们将相关背景和自旋极化的定义联系起来,在CISS中讨论其在不同上下文中的计算,并通过对CISS输运研究中的磁阻进行定量分析,提出了实用且有意义的品质因数。
    Chirality-induced spin selectivity (CISS) is a recently discovered effect in which structural chirality can result in different conductivities for electrons with opposite spins. In the CISS community, the degree of spin polarization is commonly used to describe the efficiency of the spin filtering/polarizing process, as it represents the fraction of spins aligned along the chiral axis of chiral materials originating from non-spin-polarized currents. However, the methods of defining, calculating, and analyzing spin polarization have been inconsistent across various studies, hindering advances in this field. In this Perspective, we connect the relevant background and the definition of spin polarization, discuss its calculation in different contexts in the CISS, and propose a practical and meaningful figure of merit by quantitative analysis of magnetoresistance in CISS transport studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究调查了退火对具有不同覆盖层的CoFeB/MgO/CoFeB基磁性隧道结(MTJ)中隧道磁阻(TMR)比的影响,并将其与微结构变化相关联。发现覆盖层在确定最大TMR比和相应的退火温度(Tann)中起着重要作用。对于Pt覆盖层,TMR在350°C的Tann下达到约95%,然后随着Tann的进一步增加而减少。微结构分析表明,低TMR是由于Pt/CoFeB层中的严重混合。另一方面,当在CoFeB层中引入具有抑制扩散的Ta覆盖层时,TMR继续增加,Tann高达400°C,达到250%。我们的发现表明,适当选择覆盖层可以提高MTJ的退火温度,使其与互补金属氧化物半导体后端工艺兼容。
    This study investigates the effects of annealing on the tunnel magnetoresistance (TMR) ratio in CoFeB/MgO/CoFeB-based magnetic tunnel junctions (MTJs) with different capping layers and correlates them with microstructural changes. It is found that the capping layer plays an important role in determining the maximum TMR ratio and the corresponding annealing temperature (Tann). For a Pt capping layer, the TMR reaches ~95% at a Tann of 350 °C, then decreases upon a further increase in Tann. A microstructural analysis reveals that the low TMR is due to severe intermixing in the Pt/CoFeB layers. On the other hand, when introducing a Ta capping layer with suppressed diffusion into the CoFeB layer, the TMR continues to increase with Tann up to 400 °C, reaching ~250%. Our findings indicate that the proper selection of a capping layer can increase the annealing temperature of MTJs so that it becomes compatible with the complementary metal-oxide-semiconductor backend process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自旋电子器件由于其对于短期和长期记忆的非挥发性,最近在非常规计算领域引起了很多关注,非线性快速响应,和相对较小的足迹。在这里,我们通过实验演示了双自由层垂直磁隧道结的电压驱动磁化动力学如何模拟硬件中的尖峰神经元。通过改变器件两端的直流偏置电压来控制输出尖峰速率。这种双终端设备的无场操作及其对外部施加的磁场的鲁棒性使其成为模拟密集神经网络中的神经元响应的合适候选者。设备的小能耗(4-16pJ/spike)及其可扩展性是嵌入式应用的重要优势。这种紧凑的垂直磁性隧道结结构最终可以将尖峰神经网络带到亚100nm尺寸的元件。
    Spintronic devices have recently attracted a lot of attention in the field of unconventional computing due to their non-volatility for short- and long-term memory, nonlinear fast response, and relatively small footprint. Here we demonstrate experimentally how voltage driven magnetization dynamics of dual free layer perpendicular magnetic tunnel junctions can emulate spiking neurons in hardware. The output spiking rate was controlled by varying the dc bias voltage across the device. The field-free operation of this two-terminal device and its robustness against an externally applied magnetic field make it a suitable candidate to mimic the neuron response in a dense neural network. The small energy consumption of the device (4-16 pJ/spike) and its scalability are important benefits for embedded applications. This compact perpendicular magnetic tunnel junction structure could finally bring spiking neural networks to sub-100 nm size elements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号