Mesh : Humans Child, Preschool Empyema, Pleural / microbiology drug therapy diagnosis Male Female Multiplex Polymerase Chain Reaction / methods Child Haemophilus influenzae / genetics isolation & purification Staphylococcus aureus / genetics isolation & purification drug effects Streptococcus pneumoniae / genetics isolation & purification Streptococcus pyogenes / genetics isolation & purification Infant Hospitalization Anti-Bacterial Agents / therapeutic use Sensitivity and Specificity DNA, Bacterial / genetics

来  源:   DOI:10.1371/journal.pone.0304861   PDF(Pubmed)

Abstract:
Pleural empyema is a serious complication of pneumonia in children. Negative bacterial cultures commonly impede optimal antibiotic therapy. To improve bacterial identification, we developed a molecular assay and evaluated its performance compared with bacterial culture. Our multiplex-quantitative PCR to detect Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus and Haemophilus influenzae was assessed using bacterial genomic DNA and laboratory-prepared samples (n = 267). To evaluate clinical performance, we conducted the Molecular Assessment of Thoracic Empyema (MATE) observational study, enrolling children hospitalised with empyema. Pleural fluids were tested by bacterial culture and multiplex-qPCR, and performance determined using a study gold standard. We determined clinical sensitivity and time-to-organism-identification to assess the potential of the multiplex-qPCR to reduce the duration of empiric untargeted antibiotic therapy. Using spiked samples, the multiplex-qPCR demonstrated 213/215 (99.1%) sensitivity and 52/52 (100%) specificity for all organisms. During May 2019-March 2023, 100 children were enrolled in the MATE study; median age was 3.9 years (IQR 2-5.6). A bacterial pathogen was identified in 90/100 (90%) specimens by multiplex-qPCR, and 24/100 (24%) by bacterial culture (P <0.001). Multiplex-qPCR identified a bacterial cause in 68/76 (90%) culture-negative specimens. S. pneumoniae was the most common pathogen, identified in 67/100 (67%) specimens. We estimate our multiplex-qPCR would have reduced the duration of untargeted antibiotic therapy in 61% of cases by a median 20 days (IQR 17.5-23, range 1-55). Multiplex-qPCR significantly increased pathogen detection compared with culture and may allow for reducing the duration of untargeted antibiotic therapy.
摘要:
胸膜脓胸是小儿肺炎的严重并发症。细菌培养阴性通常会阻碍最佳抗生素治疗。为了提高细菌鉴定,我们开发了一种分子检测方法,并与细菌培养进行了比较。我们的多重定量PCR检测肺炎链球菌,化脓性链球菌,使用细菌基因组DNA和实验室制备的样品(n=267)评估了金黄色葡萄球菌和流感嗜血杆菌。为了评估临床表现,我们进行了胸部脓胸分子评估(MATE)观察性研究,登记患有脓胸住院的儿童。通过细菌培养和多重qPCR检测胸膜液,和使用研究黄金标准确定的性能。我们确定了临床敏感性和时间到生物体的鉴定,以评估多重qPCR减少经验性非靶向抗生素治疗持续时间的潜力。使用加标样品,多重qPCR对所有生物体均表现出213/215(99.1%)的敏感性和52/52(100%)的特异性.在2019年5月至2023年3月期间,有100名儿童参加了MATE研究;平均年龄为3.9岁(IQR2-5.6)。通过多重qPCR在90/100(90%)标本中鉴定出细菌病原体,细菌培养24/100(24%)(P<0.001)。多重qPCR在68/76(90%)培养阴性标本中鉴定出细菌原因。肺炎链球菌是最常见的病原体,在67/100(67%)标本中鉴定。我们估计我们的多重qPCR将减少61%病例中非靶向抗生素治疗的持续时间,中位数为20天(IQR17.5-23,范围1-55)。与培养物相比,多重qPCR显着增加了病原体检测,并且可以减少非靶向抗生素治疗的持续时间。
公众号