关键词: OP4 phase P2/O3 phase Z phase biphasic in situ X‐ray diffraction layered oxide phase transformation sodium‐ion batteries sustainable cathode

来  源:   DOI:10.1002/smll.202402585

Abstract:
Sodium-ion batteries (SIBs) have emerged as a compelling alternative to lithium-ion batteries (LIBs), exhibiting comparable electrochemical performance while capitalizing on the abundant availability of sodium resources. In SIBs, P2/O3 biphasic cathodes, despite their high energy, require furthur improvements in stability to meet current energy demands. This study introduces a systematic methodology that leverages the meta-heuristically assisted NSGA-II algorithm to optimize multi-element doping in electrode materials, aiming to transcend conventional trial-and-error methods and enhance cathode capacity by the synergistic integration of P2 and O3 phases. A comprehensive phase analysis of the meta-heuristically designed cathode material Na0.76Ni0.20Mn0.42Fe0.30Mg0.04Ti0.015Zr0.025O2 (D-NFMO) is presented, showcasing its remarkable initial reversible capacity of 175.5 mAh g-1 and exceptional long-term cyclic stability in sodium cells. The investigation of structural composition and the stabilizing mechanisms is performed through the integration of multiple characterization techniques. Remarkably, the irreversible phase transition of P2→OP4 in D-NFMO is observed to be dramatically suppressed, leading to a substantial enhancement in cycling stability. The comparison with the pristine cathode (P-NFMO) offers profound insights into the long-term electrochemical stability of D-NFMO, highlighting its potential as a high-voltage cathode material utilizing abundant earth elements in SIBs. This study opens up new possibilities for future advancements in sodium-ion battery technology.
摘要:
钠离子电池(SIB)已成为锂离子电池(LIB)的引人注目的替代品,表现出可比的电化学性能,同时利用丰富的钠资源。在SIB中,P2/O3双相阴极,尽管他们精力充沛,需要进一步改善稳定性,以满足当前的能源需求。本研究引入了一种系统的方法,该方法利用元启发式辅助NSGA-II算法来优化电极材料中的多元素掺杂,旨在超越传统的试错方法,并通过P2和O3相的协同整合来提高阴极容量。提出了元启发式设计的阴极材料Na0.76Ni0.20Mn0.42Fe0.30Mg0.04Ti0.015Zr0.025O2(D-NFMO)的综合相分析,展示了其卓越的初始可逆容量175.5mAhg-1和钠电池中卓越的长期循环稳定性。通过集成多种表征技术来研究结构组成和稳定机理。值得注意的是,观察到D-NFMO中P2→OP4的不可逆相变被显著抑制,导致循环稳定性的显著提高。与原始阴极(P-NFMO)的比较为D-NFMO的长期电化学稳定性提供了深刻的见解,强调其作为高压阴极材料的潜力,利用SIBs中丰富的稀土元素。这项研究为钠离子电池技术的未来发展开辟了新的可能性。
公众号