layered oxide

层状氧化物
  • 文章类型: Journal Article
    本文报道了具有宽尺寸分布的缺氧V2O5纳米粒子中竞争磁序的自旋玻璃状共存。由于明显的缺陷密度,X射线光电子能谱产生的表面化学计量接近V2O4.65。与温度相关的电导率和热功率测量表明,极化子传导机制的跳跃能量约为0.112eV。当用SQUID磁力计测量时,V2O5-δ样品表现出强磁场以及温度依赖性磁行为,在2-350K的温度范围内显示正磁化率。场冷却和零场冷却数据表明磁滞,暗示玻璃样的行为。由于氧空位缺陷而形成的小极化子,由V4+电荷缺陷补偿,导致磁电相分离(MEPS)和各种磁交换,正如第一原理计算所预测的那样。在空氧位附近的V轨道的强杂交证明了这一点。V4+缺陷的增加显示出反铁磁(AFM)成分。未掺杂V2O4.9中的磁性多样性源于缺陷密度及其随机分布,导致MEPS。这涉及顺磁(PM)背景上的极化子和铁磁(FM)团簇中的局部自旋,而V4+二聚体诱导AFM相互作用。在不同温度下测得的电子顺磁共振谱表明,由于氧缺陷,g值为1.97的主要顺磁信号,具有广泛的FM共振状驼峰。这两个信号都随着温度的升高而减弱。中子衍射数据排除了远程磁有序化,反映组成为V2O4.886.尽管FM滞后,在中子衍射数据中没有观察到长程有序,与具有MEPS性质的极化子团簇状FM一致。这项详细的研究将促进对未掺杂非磁性系统中观察到的各种磁性行为的理解。
    This paper reports on the spin glass-like coexistence of competing magnetic orders in oxygen-deficient V2O5 nanoparticles with a broad size distribution. X-ray photoelectron spectroscopy yields the surface chemical stoichiometry of nearly V2O4.65 due to significant defect density. Temperature-dependent electrical conductivity and thermopower measurements demonstrate a polaronic conduction mechanism with a hopping energy of about 0.112 eV. The V2O5-δ sample exhibits strong field as well as temperature-dependent magnetic behaviour when measured with a SQUID magnetometer, showing positive magnetic susceptibility across the temperature range of 2-350 K. Field-cooled and zero-field-cooled data indicate hysteresis, suggesting glassy behaviour. The formation of small polarons due to oxygen vacancy defects, compensated by V4+ charge defects, results in Magneto-Electronic Phase Separation (MEPS) and various magnetic exchanges, as predicted by first-principle calculations. This is evidenced by the strong hybridisation of V orbitals in the vicinity of vacant oxygen site. An increase in V4+ defects shows an antiferromagnetic (AFM) component. The magnetic diversity in undoped V2O4.9 originates from defect density and their random distribution, leading to MEPS. This involves localised spins in polarons and ferromagnetic (FM) clusters on a paramagnetic (PM) background, while V4+ dimers induce AFM interactions. Electron paramagnetic resonance spectra measured at different temperatures indicate a dominant paramagnetic signal at a g-value of 1.97 due to oxygen defects, with a broad FM resonance-like hump. Both signals diminish with increasing temperature. Neutron diffraction data rules out long-range magnetic ordering, reflecting the composition as V2O4.886. Despite the FM hysteresis, no long-range order is observed in neutron diffraction data, consistent with the polaron cluster-like FM with MEPS nature. This detailed study shall advance the understanding of the diverse magnetic behaviour observed in undoped non-magnetic systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究探讨了在合理设计的Na0.6[Ni0.3Ru0.3Mn0.4]O2(NRM)正极材料的过渡金属层中引入空位的影响。Ru的掺入,Ni,空位增强了广泛循环过程中的结构稳定性,增加工作电压,并诱导容量增加,同时还激活氧氧化还原,分别,在Na0.7[Ni0.2VNi0.1Ru0.3Mn0.4]O2(V-NRM)化合物中。各种分析技术,包括透射电子显微镜,X射线吸收近边缘光谱,操作X射线衍射,和操作差分电化学质谱法用于评估平均氧化态和结构畸变的变化。结果表明,V-NRM表现出比NRM更高的容量,并且在100次循环后保持81%的中等容量保持率。此外,在O2p轨道中形成额外的孤对电子使V-NRM能够利用通过密度泛函计算验证的氧氧化还原的更多容量,导致OP4相的优势扩大,而不会释放O2气体。这些发现为设计具有改善钠离子电池性能和可持续性的先进高容量阴极材料提供了宝贵的见解。
    This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na0.6[Ni0.3Ru0.3Mn0.4]O2 (NRM) cathode material. The incorporation of Ru, Ni, and vacancy enhances the structural stability during extensive cycling, increases the operation voltage, and induces a capacity increase while also activating oxygen redox, respectively, in Na0.7[Ni0.2VNi0.1Ru0.3Mn0.4]O2 (V-NRM) compound. Various analytical techniques including transmission electron microscopy, X-ray absorption near edge spectroscopy, operando X-ray diffraction, and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions. The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81% after 100 cycles. Furthermore, the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation, leading to a widened dominance of the OP4 phase without releasing O2 gas. These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    层状锂化氧化物是下一代锂离子电池正极材料的有前途的材料;然而,与这些材料理论上可能的高容量相比,循环过程中的不稳定性导致随时间的差的性能。在这里,我们报告了具有Li2MO3结构的Li1.47Mn0.57Al0.13Fe0.095Co0.105Ni0.095O2.49高熵层状氧化物(HELO)的特征,其中M=Mn,Al,Fe,Co,和Ni。使用电子显微镜和X射线光谱学,我们确定了由氧空位的熵贡献稳定的均匀Li2MO3结构。由于存在较少的O位点和金属位点的3+氧化态,有时在类似材料中观察到的LiMO2结构中无法实现这种缺陷驱动的熵;相反,产生Li2-γMO3-δ。除了Li2MO3之外,这种稳定新型组合物和相的缺陷驱动熵方法可以应用于广泛的未来阴极材料,包括尖晶石和岩盐结构。
    Layered lithiated oxides are promising materials for next generation Li-ion battery cathode materials; however, instability during cycling results in poor performance over time compared to the high capacities theoretically possible with these materials. Here we report the characterizations of a Li1.47Mn0.57Al0.13Fe0.095Co0.105Ni0.095O2.49 high-entropy layered oxide (HELO) with the Li2MO3 structure where M = Mn, Al, Fe, Co, and Ni. Using electron microscopy and X-ray spectroscopy, we identify a homogeneous Li2MO3 structure stabilized by the entropic contribution of oxygen vacancies. This defect-driven entropy would not be attainable in the LiMO2 structure sometimes observed in similar materials as a secondary phase owing to the presence of fewer O sites and a 3+ oxidation state for the metal site; instead, a Li2-γMO3-δ is produced. Beyond Li2MO3, this defect-driven entropy approach to stabilizing novel compositions and phases can be applied to a wide array of future cathode materials including spinel and rock salt structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    层状电极材料中的层间距离,受受限夹层区域化学成分的影响,对其电化学性能有重大影响。无机金属离子的化学预插影响层间间距,然而,膨胀受到水合离子半径的限制。在这里,我们证明,使用不同浓度的癸基三甲基铵(DTA+)和十六烷基三甲基铵(CTA+)阳离子在化学预插合成,然后进行水热处理,混合双层钒氧化物(BVOs)的层间距离可以在11.1和35.6之间调节。我们的分析表明,层间间距的这些变化是由于限制在层间区域内的结构水和烷基铵阳离子的量不同。烷基铵阳离子浓度的增加不仅扩大了层间间距,而且还引起V-O双层的局部弯曲和无序化。非水锂离子电池中混合BVO电极的电化学循环表明,随着层间区域的扩展,比容量降低。这表明密集堆积的烷基铵阳离子阻碍了插层位点并阻碍了Li离子的传输。此外,我们发现,更大的层分离有利于活性物质溶解到电解质中,导致在延长循环期间容量快速衰减。这项研究强调,层状电极材料需要宽敞的夹层区域以及高结构和化学稳定性,为有机-无机杂化物的结构工程提供指导。
    The interlayer distances in layered electrode materials, influenced by the chemical composition of the confined interlayer regions, have a significant impact on their electrochemical performance. Chemical preintercalation of inorganic metal ions affects the interlayer spacing, yet expansion is limited by the hydrated ion radii. Herein, we demonstrate that using varying concentrations of decyltrimethylammonium (DTA+) and cetyltrimethylammonium (CTA+) cations in chemical preintercalation synthesis followed by hydrothermal treatment, the interlayer distance of hybrid bilayered vanadium oxides (BVOs) can be tuned between 11.1 Å and 35.6 Å. Our analyses reveal that these variations in interlayer spacing are due to different amounts of structural water and alkylammonium cations confined within the interlayer regions. Increased concentrations of alkylammonium cations not only expand the interlayer spacing but also induce local bending and disordering of the V-O bilayers. Electrochemical cycling of hybrid BVO electrodes in non-aqueous lithium-ion cells show that specific capacities decrease as interlayer regions expand, suggesting that the densely packed alkylammonium cations obstruct intercalation sites and hinder Li+ ion transport. Furthermore, we found that greater layer separation facilitates the dissolution of active material into the electrolyte, resulting in rapid capacity decay during extended cycling. This study emphasizes that layered electrode materials require both spacious interlayer regions as well as high structural and chemical stabilities, providing guidelines for structural engineering of organic-inorganic hybrids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钠离子电池(SIB)已成为锂离子电池(LIB)的引人注目的替代品,表现出可比的电化学性能,同时利用丰富的钠资源。在SIB中,P2/O3双相阴极,尽管他们精力充沛,需要进一步改善稳定性,以满足当前的能源需求。本研究引入了一种系统的方法,该方法利用元启发式辅助NSGA-II算法来优化电极材料中的多元素掺杂,旨在超越传统的试错方法,并通过P2和O3相的协同整合来提高阴极容量。提出了元启发式设计的阴极材料Na0.76Ni0.20Mn0.42Fe0.30Mg0.04Ti0.015Zr0.025O2(D-NFMO)的综合相分析,展示了其卓越的初始可逆容量175.5mAhg-1和钠电池中卓越的长期循环稳定性。通过集成多种表征技术来研究结构组成和稳定机理。值得注意的是,观察到D-NFMO中P2→OP4的不可逆相变被显著抑制,导致循环稳定性的显著提高。与原始阴极(P-NFMO)的比较为D-NFMO的长期电化学稳定性提供了深刻的见解,强调其作为高压阴极材料的潜力,利用SIBs中丰富的稀土元素。这项研究为钠离子电池技术的未来发展开辟了新的可能性。
    Sodium-ion batteries (SIBs) have emerged as a compelling alternative to lithium-ion batteries (LIBs), exhibiting comparable electrochemical performance while capitalizing on the abundant availability of sodium resources. In SIBs, P2/O3 biphasic cathodes, despite their high energy, require furthur improvements in stability to meet current energy demands. This study introduces a systematic methodology that leverages the meta-heuristically assisted NSGA-II algorithm to optimize multi-element doping in electrode materials, aiming to transcend conventional trial-and-error methods and enhance cathode capacity by the synergistic integration of P2 and O3 phases. A comprehensive phase analysis of the meta-heuristically designed cathode material Na0.76Ni0.20Mn0.42Fe0.30Mg0.04Ti0.015Zr0.025O2 (D-NFMO) is presented, showcasing its remarkable initial reversible capacity of 175.5 mAh g-1 and exceptional long-term cyclic stability in sodium cells. The investigation of structural composition and the stabilizing mechanisms is performed through the integration of multiple characterization techniques. Remarkably, the irreversible phase transition of P2→OP4 in D-NFMO is observed to be dramatically suppressed, leading to a substantial enhancement in cycling stability. The comparison with the pristine cathode (P-NFMO) offers profound insights into the long-term electrochemical stability of D-NFMO, highlighting its potential as a high-voltage cathode material utilizing abundant earth elements in SIBs. This study opens up new possibilities for future advancements in sodium-ion battery technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于可再充电钠离子电池的P2型层状氧化物由于其优异的电化学性能而备受关注。然而,这些类型的阴极通常具有较差的循环稳定性。为了克服这个缺点,在这项工作中,采用共沉淀法成功制备了富锰表面修饰P2结构的新型球形浓度梯度氧化物Na0.67Ni0.17Co0.17Mn0.66O2。Mn的浓度从内核到表面增加,赋予材料具有优异的循环稳定性。与通过固态方法和浓度恒定材料合成的样品相比,阴极具有增强的电化学性能。它显示出143.2mAh/g的初始放电容量,并且在100轮之后在2V和4.5V之间保持131mAh/g。样品电化学性能的显着改善得益于独特的浓度梯度结构,和富含Mn的表面,有效地稳定了基本的P2结构。芯中相对较高的Ni含量导致样品的放电容量略有改善。该策略可能为制备具有高电化学性能的钠离子电池的层状阴极提供新的见解。
    P2-type layered oxides for rechargeable sodium-ion batteries have drawn a lot of attention because of their excellent electrochemical performance. However, these types of cathodes usually suffer from poor cyclic stability. To overcome this disadvantage, in this work, novel ball-shaped concentration-gradient oxide Na0.67Ni0.17Co0.17Mn0.66O2 with P2 structure modified by Mn-rich surface is successfully prepared using co-precipitation method. The concentration of Mn increased from the inner core to the surface, endowing the material with an excellent cyclic stability. The cathode exhibits enhanced electrochemical properties than that of the sample synthesized by solid-state method and concentration-constant material. It shows 143.2 mAh/g initial discharge capacity and retains 131 mAh/g between 2 V and 4.5 V after 100 rounds. The significant improvement in the electrochemical properties of the sample benefits from the unique concentration-gradient structure, and the Mn-rich surface that effectively stabilizes the basic P2 structure. The relatively higher Ni content in the core leads to a slight improvement in the discharge capacity of the sample. This strategy may provide new insights for preparing layered cathodes for sodium-ion batteries with high electrochemical performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    层状过渡金属氧化物作为钠离子电池的阴极材料具有最大的商业应用潜力。然而,过渡金属氧化物在循环过程中不可避免地经历不可逆的氧损失过程,这导致材料的结构变化,并最终导致严重的容量退化。在这项工作中,使用密度泛函理论(DFT)计算,Ni-O键被发现是M-O键中最弱的,这可能导致结构失效。在这里,协同表面CeO2改性和Ce元素的痕量掺杂激发了氧的氧化还原并提高了其可逆性,从而提高材料的结构稳定性和电化学性能。理论计算证明,Na0.67Mn0.7Ni0.2Co0.1O2(MNC)从CeO2获得电子,避免了充电过程中释放的过能量破坏Ni-O键,抑制了氧的损失。在500mAg-1下,200次循环的容量保持率为77.37%,而未改性的Na0.67Mn0.7Ni0.2Co0.1O2为33.84%。总的来说,本工作表明,表面涂层和掺杂的协同作用是实现调节氧释放和高电化学性能的有效策略。
    Layered transition metal oxides have the greatest potential for commercial application as cathode materials for sodium-ion batteries. However, transition metal oxides inevitably undergo an irreversible oxygen loss process during cycling, which leads to structural changes in the material and ultimately to severe capacity degradation. In this work, using density function theory (DFT) calculations, the Ni-O bond is revealed to be the weakest of the M-O bonds, which may lead to structural failure. Herein, the synergistic surface CeO2 modification and the trace doping of Ce elements stimulate oxygen redox and improve its reversibility, thus improving the structural stability and electrochemical performance of the material. Theoretical calculations prove that Na0.67Mn0.7Ni0.2Co0.1O2 (MNC) obtains electrons from CeO2, avoiding destruction of the Ni-O bond by over-energy released during the charging process and inhibiting oxygen loss. The capacity retention was 77.37% for 200 cycles at 500 mA g-1, compared to 33.84% for the unmodified Na0.67Mn0.7Ni0.2Co0.1O2. Overall, the present work demonstrates that the synergistic effect of surface coating and doping is an effective strategy for realizing tuning oxygen release and high electrochemical performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管层状氧化钠材料被认为是钠离子电池中有前途的阴极,双相P3/O3描述了改进的电化学性能和结构稳定性。在这里,用“LiF”积分合成了一种共存的P3/O3双相正极材料,通过X射线衍射和Rietveld细化分析验证。此外,通过电感耦合等离子体发射光谱法(ICP-OES)和能量色散X射线光谱法(EDS)推断Li和F的存在。双相P3/O3阴极在室温下100次循环(0.2C/30mAg-1)后显示出85%的出色容量保留率,在-20°C下在100次循环(0.1C/15mAg-1)后显示出94%的出色容量保留率与原始阴极相比具有优异的倍率能力。此外,包括硬碳阳极和具有1MNaPF6电解质的双相阴极的全电池在-20至50°C的更宽温度范围内显示出优异的循环稳定性(能量密度为151.48Whkg-1),由于增强的结构稳定性,减轻了Jahn-Teller的扭曲,和快速的Na动力学促进钠离子电池在各种温度下的Na运动。详细的后表征研究表明,LiF的掺入是容易的Na+动力学,提高整体Na储存。
    Though layered sodium oxide materials are identified as promising cathodes in sodium-ion batteries, biphasic P3/O3 depicts improved electrochemical performance and structural stability. Herein, a coexistent P3/O3 biphasic cathode material was synthesized with \"LiF\" integration, verified with X-ray diffraction and Rietveld refinement analysis. Furthermore, the presence of Li and F was deduced by inductively coupled plasma-optical emission spectrometry (ICP-OES) and energy dispersive X-ray spectroscopy (EDS). The biphasic P3/O3 cathode displayed an excellent capacity retention of 85% after 100 cycles (0.2C/30 mA g-1) at room temperature and 94% at -20 °C after 100 cycles (0.1C/15 mA g-1) with superior rate capability as compared to the pristine cathode. Furthermore, a full cell comprising a hard carbon anode and a biphasic cathode with 1 M NaPF6 electrolyte displayed excellent cyclic stabilities at a wider temperature range of -20 to 50 °C (with the energy density of 151.48 Wh kg-1) due to the enhanced structural stability, alleviated Jahn-Teller distortions, and rapid Na+ kinetics facilitating Na+ motion at various temperatures in sodium-ion batteries. The detailed post-characterization studies revealed that the incorporation of LiF accounts for facile Na+ kinetics, boosting the overall Na storage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于其经济有效性,层状氧化物被认为是用于快速充电锂离子电池(LIB)的潜在先进阴极材料,高能量密度,和环保性质。尽管如此,层状氧化物经历热失控,容量衰减,和快速充电期间的电压衰减。本文总结了最近在LIB阴极材料的快速充电中实施的各种修改,包括组件改进,形态控制,离子掺杂,表面涂层,和复合结构。根据研究进展,总结了层状氧化物阴极的发展方向。Further,提出了层状氧化物阴极提高快速充电性能的可能策略和未来发展方向。
    Layered oxides are considered prospective state-of-the-art cathode materials for fast-charging lithium-ion batteries (LIBs) owning to their economic effectiveness, high energy density, and environmentally friendly nature. Nonetheless, layered oxides experience thermal runaway, capacity decay, and voltage decay during fast charging. This article summarizes various modifications recently implemented in the fast charging of LIB cathode materials, including component improvement, morphology control, ion doping, surface coating, and composite structure. The development direction of layered-oxide cathodes is summarized based on research progress. Further, possible strategies and future development directions of layered-oxide cathodes to improve fast-charging performance are proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    钠阴极的深钠提取/插入通常会导致不希望的Jahn-Teller畸变和相变,这两者都会降低结构稳定性并导致长周期可靠性差。在这里,我们报告了零应变P2-Na2/3Li1/6Co1/6Mn2/3O2阴极,其中锂/钴取代有助于通过减少Mn3+/Mn4+氧化还原增强主体结构,减轻了Jahn-Teller的扭曲,并最小化晶格变化。单元结构中94.5%的Na可以在4.5V的电荷截止电压下可逆地循环(与Na+/Na)。令人印象深刻的是,在深度钠(脱)插层时实现了没有相变的固溶体反应,这造成了0.53%的最小体积偏差。它获得了178mAhg-1的高放电容量,534Whkg-1的高能量密度,以及250次循环后1C时95.8%的优异容量保持率。
    Deep sodium extraction/insertion of sodium cathodes usually causes undesired Jahn-Teller distortion and phase transition, both of which will reduce structural stability and lead to poor long-cycle reliability. Here we report a zero-strain P2- Na2/3 Li1/6 Co1/6 Mn2/3 O2 cathode, in which the lithium/cobalt substitution contributes to reinforcing the host structure by reducing the Mn3+ /Mn4+ redox, mitigating the Jahn-Teller distortion, and minimizing the lattice change. 94.5 % of Na+ in the unit structure can be reversibly cycled with a charge cut-off voltage of 4.5 V (vs. Na+ /Na). Impressively, a solid-solution reaction without phase transitions is realized upon deep sodium (de)intercalation, which poses a minimal volume deviation of 0.53 %. It attains a high discharge capacity of 178 mAh g-1 , a high energy density of 534 Wh kg-1 , and excellent capacity retention of 95.8 % at 1 C after 250 cycles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号