sustainable cathode

  • 文章类型: Journal Article
    四硫化钒(VS4)是可充电镁电池系统(RMBSs)最有前途的阴极材料之一。元素替换以扩展图层,硫空位的产生,和减小颗粒尺寸的VS4无疑是有效的策略,以提高阴极性能。实验和DFT分析表明,在VS4中,钒和钴的价态已从V2升高到V3,Co2升高到Co3,并且由于钴取代,Co-S键长缩短,通过增加钴的浓度,导致VS4的层状原子结构中的整体内部极化增强。这种电荷积累现象有助于调节磁化和适应循环时的体积膨胀,与RMBS中的原始VS4相比,在长期稳定的循环过程中,VS4具有巨大的结构稳定性和可持续的电池性能,其成本为容量减少20%。因此,9%CoVS4在500mA/g-1的电流密度下表现出158mAh/g-1的容量,在1000次循环后具有约98%的容量保持率。可持续的阴极性能是商业化最渴望的特征。这项工作提供了有关VS4在具有非亲核0.25mol/L(R-PhOMgCl)2-A1Cl3/THF(PMC)电解质的RMBS中可持续阴极性能的结构限制和机会的见解,并为未来的发展奠定了理论和实验基础。
    Vanadium tetrasulfide (VS4) is one of the most promising cathodic materials for rechargeable magnesium battery systems (RMBSs). Elemental substitution to expand layers, creation of sulfur vacancies, and reduction of particle sizes of VS4 are undoubtedly effective strategies to enhance cathodic performances. Experimental and DFT analysis revealed that valence states of vanadium and cobalt have been elevated from V2+ to V3+ and Co2+ to Co3+ in VS4 and that the Co-S bond length shortened due to cobalt substitution, which resulted in enhanced overall internal polarization in the layered atomic structure of VS4 by increasing cobalt concentrations. This phenomenon of charge accumulation contributes toward regulated magnesiation and accommodated volume expansion while cycling, resulting in the enormous structural stability of VS4 and sustainable battery performance during a long and stable cycling at a cost of 20% capacity diminution as compared to pristine VS4 in RMBS. Hence, 9% CoVS4 demonstrated a capacity of 158 mAh g-1 at a current density of 500 mA g-1 with approximately 98% capacity retention after 1000 cycles. Sustainable cathodic performance is the most desirous feature for commercialization. This work provides insight realization regarding structural limitations and opportunities of VS4 for sustainable cathodic performances in RMBS with non-nucleophilic 0.25 mol/L (R-PhOMgCI)2-A1Cl3/THF (PMC) electrolyte and has laid a theoretical plus experimental foundation for future developments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钠离子电池(SIB)已成为锂离子电池(LIB)的引人注目的替代品,表现出可比的电化学性能,同时利用丰富的钠资源。在SIB中,P2/O3双相阴极,尽管他们精力充沛,需要进一步改善稳定性,以满足当前的能源需求。本研究引入了一种系统的方法,该方法利用元启发式辅助NSGA-II算法来优化电极材料中的多元素掺杂,旨在超越传统的试错方法,并通过P2和O3相的协同整合来提高阴极容量。提出了元启发式设计的阴极材料Na0.76Ni0.20Mn0.42Fe0.30Mg0.04Ti0.015Zr0.025O2(D-NFMO)的综合相分析,展示了其卓越的初始可逆容量175.5mAhg-1和钠电池中卓越的长期循环稳定性。通过集成多种表征技术来研究结构组成和稳定机理。值得注意的是,观察到D-NFMO中P2→OP4的不可逆相变被显著抑制,导致循环稳定性的显著提高。与原始阴极(P-NFMO)的比较为D-NFMO的长期电化学稳定性提供了深刻的见解,强调其作为高压阴极材料的潜力,利用SIBs中丰富的稀土元素。这项研究为钠离子电池技术的未来发展开辟了新的可能性。
    Sodium-ion batteries (SIBs) have emerged as a compelling alternative to lithium-ion batteries (LIBs), exhibiting comparable electrochemical performance while capitalizing on the abundant availability of sodium resources. In SIBs, P2/O3 biphasic cathodes, despite their high energy, require furthur improvements in stability to meet current energy demands. This study introduces a systematic methodology that leverages the meta-heuristically assisted NSGA-II algorithm to optimize multi-element doping in electrode materials, aiming to transcend conventional trial-and-error methods and enhance cathode capacity by the synergistic integration of P2 and O3 phases. A comprehensive phase analysis of the meta-heuristically designed cathode material Na0.76Ni0.20Mn0.42Fe0.30Mg0.04Ti0.015Zr0.025O2 (D-NFMO) is presented, showcasing its remarkable initial reversible capacity of 175.5 mAh g-1 and exceptional long-term cyclic stability in sodium cells. The investigation of structural composition and the stabilizing mechanisms is performed through the integration of multiple characterization techniques. Remarkably, the irreversible phase transition of P2→OP4 in D-NFMO is observed to be dramatically suppressed, leading to a substantial enhancement in cycling stability. The comparison with the pristine cathode (P-NFMO) offers profound insights into the long-term electrochemical stability of D-NFMO, highlighting its potential as a high-voltage cathode material utilizing abundant earth elements in SIBs. This study opens up new possibilities for future advancements in sodium-ion battery technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号