关键词: anti-inflammatory anticancer antitumor bee venom in vitro nanosystems natural compounds niosomes

来  源:   DOI:10.3390/ph17050572   PDF(Pubmed)

Abstract:
Despite past efforts towards therapeutical innovation, cancer remains a highly incident and lethal disease, with current treatments lacking efficiency and leading to severe side effects. Hence, it is imperative to develop new, more efficient, and safer therapies. Bee venom has proven to have multiple and synergistic bioactivities, including antitumor effects. Nevertheless, some toxic effects have been associated with its administration. To tackle these issues, in this work, bee venom-loaded niosomes were developed, for cancer treatment. The vesicles had a small (150 nm) and homogeneous (polydispersity index of 0.162) particle size, and revealed good therapeutic efficacy in in vitro gastric, colorectal, breast, lung, and cervical cancer models (inhibitory concentrations between 12.37 ng/mL and 14.72 ng/mL). Additionally, they also revealed substantial anti-inflammatory activity (inhibitory concentration of 28.98 ng/mL), effects complementary to direct antitumor activity. Niosome safety was also assessed, both in vitro (skin, liver, and kidney cells) and ex vivo (hen\'s egg chorioallantoic membrane), and results showed that compound encapsulation increased its safety. Hence, small, and homogeneous bee venom-loaded niosomes were successfully developed, with substantial anticancer and anti-inflammatory effects, making them potentially promising primary or adjuvant cancer therapies. Future research should focus on evaluating the potential of the developed platform in in vivo models.
摘要:
尽管过去努力进行治疗创新,癌症仍然是一种高度偶发和致命的疾病,目前的治疗缺乏效率,并导致严重的副作用。因此,必须开发新的,更有效率,更安全的疗法。蜂毒已被证明具有多重和协同的生物活性,包括抗肿瘤作用.然而,一些毒性作用与其给药有关。为了解决这些问题,在这项工作中,开发了载有蜂毒的niosomes,癌症治疗。囊泡具有小(150nm)和均匀(多分散指数为0.162)的粒度,并在体外胃中显示出良好的治疗效果,结直肠,乳房,肺,和宫颈癌模型(抑制浓度在12.37ng/mL和14.72ng/mL之间)。此外,它们还显示出实质性的抗炎活性(抑制浓度为28.98ng/mL),与直接抗肿瘤活性互补的作用。还评估了Niosome安全性,两者都在体外(皮肤,肝脏,和肾细胞)和离体(鸡卵绒毛尿囊膜),结果表明,复合包封提高了其安全性。因此,小,并成功开发了同质的蜂毒niosome,具有显著的抗癌和抗炎作用,使它们成为潜在的有前途的主要或辅助癌症疗法。未来的研究应该集中在评估开发的平台在体内模型中的潜力。
公众号