关键词: Brain‐Heart EEG heart rate variability source analysis

Mesh : Humans Electroencephalography / methods Adult Male Female Young Adult Vagus Nerve / physiology Cerebral Cortex / physiology diagnostic imaging Sympathetic Nervous System / physiology Heart Rate / physiology Brain / physiology diagnostic imaging Heart / physiology diagnostic imaging

来  源:   DOI:10.1002/hbm.26677   PDF(Pubmed)

Abstract:
The interplay between cerebral and cardiovascular activity, known as the functional brain-heart interplay (BHI), and its temporal dynamics, have been linked to a plethora of physiological and pathological processes. Various computational models of the brain-heart axis have been proposed to estimate BHI non-invasively by taking advantage of the time resolution offered by electroencephalograph (EEG) signals. However, investigations into the specific intracortical sources responsible for this interplay have been limited, which significantly hampers existing BHI studies. This study proposes an analytical modeling framework for estimating the BHI at the source-brain level. This analysis relies on the low-resolution electromagnetic tomography sources localization from scalp electrophysiological recordings. BHI is then quantified as the functional correlation between the intracortical sources and cardiovascular dynamics. Using this approach, we aimed to evaluate the reliability of BHI estimates derived from source-localized EEG signals as compared with prior findings from neuroimaging methods. The proposed approach is validated using an experimental dataset gathered from 32 healthy individuals who underwent standard sympathovagal elicitation using a cold pressor test. Additional resting state data from 34 healthy individuals has been analysed to assess robustness and reproducibility of the methodology. Experimental results not only confirmed previous findings on activation of brain structures affecting cardiac dynamics (e.g., insula, amygdala, hippocampus, and anterior and mid-cingulate cortices) but also provided insights into the anatomical bases of brain-heart axis. In particular, we show that the bidirectional activity of electrophysiological pathways of functional brain-heart communication increases during cold pressure with respect to resting state, mainly targeting neural oscillations in the δ $$ \\delta $$ , β $$ \\beta $$ , and γ $$ \\gamma $$ bands. The proposed approach offers new perspectives for the investigation of functional BHI that could also shed light on various pathophysiological conditions.
摘要:
大脑和心血管活动之间的相互作用,被称为功能性脑-心相互作用(BHI),和它的时间动态,与过多的生理和病理过程有关。已经提出了脑-心脏轴的各种计算模型,以利用脑电图(EEG)信号提供的时间分辨率来无创地估计BHI。然而,对造成这种相互作用的特定皮质内来源的调查有限,这严重阻碍了现有的BHI研究。本研究提出了一个分析建模框架,用于在源脑水平上估计BHI。该分析依赖于来自头皮电生理记录的低分辨率电磁层析成像源定位。然后将BHI量化为皮质内源和心血管动力学之间的功能相关性。使用这种方法,我们的目的是与神经影像学方法的先前发现相比,评估源定位EEG信号得出的BHI估计值的可靠性。使用从32名健康个体收集的实验数据集对所提出的方法进行了验证,这些个体使用冷加压测试进行了标准的交感神经诱发。分析了来自34个健康个体的其他静息状态数据,以评估该方法的稳健性和可重复性。实验结果不仅证实了先前关于激活影响心脏动力学的大脑结构的发现(例如,脑岛,杏仁核,海马体,和前扣带皮质和中扣带皮质),但也提供了有关脑-心轴解剖学基础的见解。特别是,我们表明,在冷压期间,相对于静息状态,功能性脑-心脏通信的电生理途径的双向活动增加,主要针对δ$$\\delta$$中的神经振荡,β$$\\β$$,和γ$$\\gamma$$带。所提出的方法为功能性BHI的研究提供了新的视角,也可以阐明各种病理生理条件。
公众号