whole-exome-sequencing

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fgene.202.943117。].
    [This corrects the article DOI: 10.3389/fgene.2022.943117.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    简介:伴有皮质下梗死和白质脑病的常染色体显性遗传性脑动脉病(CADASIL)是一种常染色体显性遗传性系统性血管疾病,主要累及小动脉。CADASIL患者有偏头痛,复发性缺血性中风,认知能力下降,和痴呆症。NOTCH3基因,位于染色体19p13.12上,是CADASIL中的致病基因之一。在这里,我们研究了具有杂合NOTCH3突变的中国CADASIL家族的遗传和表型特征。方法和结果:在家庭中,先证者头晕,中风,和认知缺陷。脑磁共振成像(MRI)显示颞叶对称白质病变,外囊,侧脑室,和深层大脑。全外显子组测序确定了先证者中已知的错义突变,c.397C>T(p。Arg133Cys),在他的儿子和孙女中使用Sanger测序鉴定。先证者的弟弟和妹妹也有认知障碍或脑梗塞的病史,但是没有这种基因突变,这可能凸显了生活方式对这种神经系统疾病的影响。结论:我们确定了一个已知的CADASIL引起的突变NOTCH3(c.397C>T,p.Arg133Cys)在一个中国家庭。该家族中突变携带者的临床表现具有高度异质性,这可能是CADASIL中不同突变的病因的共同特征。分子遗传学分析对于准确诊断至关重要,以及为CADASIL提供遗传咨询。
    Introduction: Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal-dominant systemic vascular disease that primarily involves small arteries. Patients with CADASIL experience migraines, recurrent ischemic strokes, cognitive decline, and dementia. The NOTCH3 gene, which is located on chromosome 19p13.12, is one of the disease-causing genes in CADASIL. Herein, we investigate the genetic and phenotypic features in a Chinese CADASIL family with heterozygous NOTCH3 mutation. Methods and Results: In the family, the proband suffered from dizziness, stroke, and cognitive deficits. Brain magnetic resonance imaging (MRI) demonstrated symmetrical white matter lesions in the temporal lobe, outer capsule, lateral ventricle, and deep brain. Whole-exome sequencing identified a known missense mutation in the proband, c.397C>T (p.Arg133Cys), which was identified in his son and granddaughter using Sanger sequencing. The proband\'s younger brother and younger sister also have a history of cognitive impairment or cerebral infarction, but do not have this genetic mutation, which may highlight the impact of lifestyle on this neurological disease. Conclusion: We identified a known CADASIL-causing mutation NOTCH3 (c.397C>T, p.Arg133Cys) in a Chinese family. The clinical manifestations of mutation carriers in this family are highly heterogeneous, which is likely a common feature for the etiology of different mutations in CADASIL. Molecular genetic analyses are critical for accurate diagnosis, as well as the provision of genetic counselling for CADASIL.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    上游开放阅读框(uORF)介导的翻译控制已成为人类健康和疾病的重要调控机制。然而,尚未对癌症相关体细胞uORF突变进行系统搜索.这里,我们分析了规范(uAUG)和替代翻译起始位点(ATIS)的遗传变异性,以及来自患者乳腺样本的3394个全外显子组测序数据集中相关的上游终止密码子(uStops),结肠,肺,前列腺,皮肤癌和急性髓细胞性白血病,由癌症基因组图谱研究网络提供。我们发现,66.5%的患者样本受到5277例复发性uORF相关体细胞单核苷酸变异中至少一种改变446uAUG的影响,347uStop,和4733个ATIS密码子。虽然在所有实体中检测到12种uORF变体,在这里分析的所有五种类型的实体癌中发生了17种变体。NBPF20和CHCHD2的TLS中单个体细胞变异的最高频率在LAML中达到10.1%,在皮肤癌患者中达到8.1%。分别。通过双荧光素酶报告基因测定进行功能评估,鉴定出19种uORF变体,导致相关主编码序列的显着翻译失调,从SETD4中AUG.1>UUG变体的1.73倍诱导到HLA-DRB1中CUG.6>GUG变体的0.006倍抑制。这些数据表明,体细胞uORF突变在人类恶性肿瘤中非常普遍,并且蛋白质表达的翻译调节缺陷可能导致癌症的发作或进展。
    Upstream open reading frame (uORF)-mediated translational control has emerged as an important regulatory mechanism in human health and disease. However, a systematic search for cancer-associated somatic uORF mutations has not been performed. Here, we analyzed the genetic variability at canonical (uAUG) and alternative translational initiation sites (aTISs), as well as the associated upstream termination codons (uStops) in 3394 whole-exome-sequencing datasets from patient samples of breast, colon, lung, prostate, and skin cancer and of acute myeloid leukemia, provided by The Cancer Genome Atlas research network. We found that 66.5% of patient samples were affected by at least one of 5277 recurrent uORF-associated somatic single nucleotide variants altering 446 uAUG, 347 uStop, and 4733 aTIS codons. While twelve uORF variants were detected in all entities, 17 variants occurred in all five types of solid cancer analyzed here. Highest frequencies of individual somatic variants in the TLSs of NBPF20 and CHCHD2 reached 10.1% among LAML and 8.1% among skin cancer patients, respectively. Functional evaluation by dual luciferase reporter assays identified 19 uORF variants causing significant translational deregulation of the associated main coding sequence, ranging from 1.73-fold induction for an AUG.1 > UUG variant in SETD4 to 0.006-fold repression for a CUG.6 > GUG variant in HLA-DRB1. These data suggest that somatic uORF mutations are highly prevalent in human malignancies and that defective translational regulation of protein expression may contribute to the onset or progression of cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Skeletal dysplasias (SDs) are common birth defects, but they are difficult to diagnose accurately according to only the limited phenotypic information available from ultrasound during the pregnancy. To evaluate the application of whole-exome sequencing (WES) and expand the data in the prenatal molecular diagnosis of fetuses with SDs, we collected 55 fetuses with SDs based on ultrasonographic features. WES of the fetuses or parent-fetus trio were subjected to sequential tests and produced a diagnostic yield of 64% (35/55). 65% (11/17) of families with a history of adverse pregnancies were diagnosed, 16 genes were involved and 37 different pathogenic or likely pathogenic variants were identified, including 14 novel variants, which were first reported in this study. De novo variants were identified in 21 cases (60%, 21/35) among the fetuses with a genetic diagnosis. The pathogenicity of two novel splice-site variants was confirmed by constructing minigene in vitro. Our results revealed that WES can provide new evidence for the relationship between the genotype and phenotype of fetuses with SDs, as well as broaden the mutation spectrum of detected genes, which is significant for prenatal diagnosis and genetic counseling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    UNASSIGNED: Oculocerebrocutaneous syndrome (Delleman Oorthuys syndrome) (OMIM 164180) is a rare syndrome affecting eyes, skin, and central nervous system, and it is usually associated with microphthalmia.
    UNASSIGNED: A 4-day old baby boy was referred to our hospital for the evaluation of buphthalmos in the left eye. His clinical evaluation was remarkable for oculocerebrocutaneous syndrome with congenital glaucoma in the left eye and microphthalmos in the right eye.
    UNASSIGNED: Our report represents the first case of oculocerebrocutaneous syndrome associated with unilateral congenital glaucoma so far in the literature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Objective: To identify the genetic background of ALS segregating in a large Bedouin family in Israel. Methods: Exome sequencing was carried out on three siblings in a family segregating ALS, two affected and one without neurological symptoms. Filtering for causative variants and for modifiers was carried out. Eight variants were confirmed by Sanger sequencing and genotyped on nine available members of the family (three affected and six unaffected). Results: We report the identification of a novel mutation in TARDBP, p.Ala321Asp, segregating in the family. The patients are affected with early onset (average age 34.5, 21-43 years old) and fast progressive disease. The mutation is in exon 6, in the glycin-rich domain, and is predicted to be deleterious. Additional rare, potentially deleterious variants were observed in the three patients, only one of them, PLEKHG5-Phe538Leu, which is located 4.5 Mb upstream to the TARDBP, was also fully segregating in the family. Conclusion: We identified a novel mutation in TARDBP which segregates with the disease in a large family. Additional rare variants were identified, and the combination of next-generation-sequencing together with linkage analysis was optimal to identify causality and modification, emphasizing the importance of combining the two analyses. Burden of deleterious variants may be associated with early age at onset.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    Silver-Russell syndrome (SRS) is a rare, well-recognized disorder characterized by growth restriction, including intrauterine and postnatal growth. Most SRS cases are caused by hypomethylation of the paternal imprinting center 1 (IC1) in chromosome 11p15.5 and maternal uniparental disomy in chromosome 7 (UPD7). Here, we report on a Chinese family with a 4 year old male proband presenting with low birth weight, growth retardation, short stature, a narrow chin, delayed bone age, and speech delays, as a result of a rare molecular etiology. Whole-exome sequencing was conducted, and a novel de novo IGF2 splicing variant, NM_000612.4: c.157+5G > A, was identified on the paternal allele. In vitro functional analysis by RT-PCR and Sanger sequencing revealed that the variant leads to an aberrant RNA transcript lacking exon 2. Our results further confirm the IGF2 variant mediates SRS and expand the pathogenic variant and phenotypic spectrum of IGF2-mediated SRS. The results indicate that, beyond DNA methylation and UPD7 and CDKN1C variant tests, IGF2 gene screening should also be considered for SRS molecular diagnoses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    RASopathies are a group of rare genetic diseases caused by germline mutations in genes involved in the RAS-mitogen-activated protein kinase (RAS-MAPK) pathway. Whole-exome sequencing (WES) is a powerful approach for identifying new variants in coding and noncoding DNA sequences, including miRNAs. miRNAs are fine-tuning negative regulators of gene expression. The presence of variants in miRNAs could lead to malfunctions of regulation, resulting in diseases. Here, we identified 41 variants in mature miRNAs through WES analysis in five patients with previous clinical diagnosis of RASopathies syndromes. The pathways, biological processes, and diseases that were over-represented among the target genes of the mature miRNAs harboring variants included the RAS, MAPK, RAP1, and PIK3-Akt signaling pathways, neuronal differentiation, neurogenesis and nervous system development, congenital cardiac defects (hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy), and the phenotypes and syndromes of RASopathies (Noonan syndrome, Legius syndrome, Costello syndrome, Cafe au lait spots multiple, subaortic stenosis, pulmonary valve stenosis, and LEOPARD syndrome). Furthermore, eight selected variants in nine mature miRNAs (hsa-miR-1304, hsa-miR-146a, hsa-miR-196a2, hsa-miR-499a/hsa-miR-499b, hsa-miR-449b, hsa-miR-548l, hsa-miR-575, and hsa-miR-593) may have caused alterations in the secondary structures of miRNA precursor. Selected miRNAs containing variants such as hsa-miR-146a-3p, hsa-miR-196a-3p, hsa-miR-548l, hsa-miR-449b-5p, hsa-miR-575, and hsa-miR499a-3p could regulate classical genes associated with Rasopathies and RAS-MAPK pathways, contributing to modify the expression pattern of miRNAs in patients. RT-qPCR expression analysis revealed four differentially expressed miRNAs that were downregulated: miRNA-146a-3p in P1, P2, P3, P4, and P5, miR-1304-3p in P2, P3, P4, and P5, miR-196a2-3p in P3, and miR-499b-5p in P1. miR-499a-3p was upregulated in P1, P3, and P5. These results indicate that miRNAs show different expression patterns when these variants are present in patients. Therefore, this study characterized the role of miRNAs harboring variants related to RASopathies for the first time and indicated the possible implications of these variants for phenotypes of RASopathies such as congenital cardiac defects and cardio-cerebrovascular diseases. The expression and existence of miRNA variants may be used in the study of biomarkers of the RASopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: to determine the occurrence of homozygous rare, in-silico damaging variants in a genetically relatively homogenous group of amyotrophic lateral sclerosis (ALS) patients.
    METHODS: Whole-exome-sequencing of 43 ALS patients of North-Africa Jewish origin was performed. Data were filtered to identify very rare homozygous recessive in-silico damaging variants, in genes annotated to ALS-associated cellular pathways.
    RESULTS: We identified a rare missense homozygous variant, p.Arg663Cys in MFN2, predicted to be damaging, in a patient with an early age at disease onset (36 years) and fast progression. An additional ALS patient carried the mutation and together established its association to ALS (p = .01). Additional homozygous variants were identified, including the risk allele p.Arg261His in NEK1, as well as variants in genes known to be associated with other neurodegenerative diseases, such as HTT (Huntington\'s disease), ATM (Ataxia-Telangiectasia), and ZFYVE26 (SPG15), and variants in genes previously reported as upregulated (LZTS3) or downregulated (ARMC4, CFAP54, and MTHFSD) in ALS patients. Altogether, 13 patients (30%) carried at least one homozygous rare in-silico damaging variant, of them 10 carried either another rare homozygous variant and/or a variant in a known ALS gene, which is categorized as pathogenic, likely-pathogenic or variant of uncertain significance.
    CONCLUSIONS: Our results suggest the contribution of recessive alleles to ALS and the possibility of burden of mutations, emphasizing the complexity of ALS genetics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Next-generation sequencing (NGS) technology has expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice today. This review describes the recent technological developments in NGS applied to the field of oncology. A number of clinical applications are reviewed, i.e., mutation detection in inherited cancer syndromes based on DNA-sequencing, detection of spliceogenic variants based on RNA-sequencing, DNA-sequencing to identify risk modifiers and application for pre-implantation genetic diagnosis, cancer somatic mutation analysis, pharmacogenetics and liquid biopsy. Conclusive remarks, clinical limitations, implications and ethical considerations that relate to the different applications are provided.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号