water oxidation reaction

水氧化反应
  • 文章类型: Journal Article
    通过双电子(2e-)氧还原(2e-ORR)或水氧化(2e-WOR)反应从O2或H2O电合成过氧化氢(H2O2)提供了传统蒽醌工艺的绿色和可持续的替代方案。在这里,据报道,通过耦合2e-ORR和2e-WOR,其中双功能富氧空位Bi2O3纳米棒(Ov-Bi2O3-EO),通过电化学氧化重构Bi基金属有机骨架(Bi-MOF)纳米棒前驱体获得,用作有效的阳极和阴极电催化剂,在具有高法拉第效率的两个电极处实现同时产生H2O2。具体来说,基于这种独特的氧缺陷Bi催化剂的耦合2e-ORR//2e-WOR电解系统在H2O2的配对电合成中表现出优异的性能,提供了154.8%的显着电池法拉第效率和4.3mmolh-1cm-2的超高H2O2生产速率。实验与理论分析相结合,揭示了氧空位在优化与选择性双电子反应途径相关的中间体吸附中的关键作用。从而改善在两个电极处的2e-反应过程的活性和选择性。这项工作为开发先进的电催化剂和设计用于可扩展和可持续的H2O2电合成的新型成对电解系统建立了新的范例。
    The electrosynthesis of hydrogen peroxide (H2O2) from O2 or H2O via the two-electron (2e-) oxygen reduction (2e- ORR) or water oxidation (2e- WOR) reaction provides a green and sustainable alternative to the traditional anthraquinone process. Herein, a paired-electrosynthesis tactic is reported for concerted H2O2 production at a high rate by coupling the 2e- ORR and 2e- WOR, in which the bifunctional oxygen-vacancy-enriched Bi2O3 nanorods (Ov-Bi2O3-EO), obtained through electrochemically oxidative reconstruction of Bi-based metal-organic framework (Bi-MOF) nanorod precursor, are used as both efficient anodic and cathodic electrocatalysts, achieving concurrent H2O2 production at both electrodes with high Faradaic efficiencies. Specifically, the coupled 2e- ORR//2e- WOR electrolysis system based on such distinctive oxygen-defect Bi catalyst displays excellent performance for the paired-electrosynthesis of H2O2, delivering a remarkable cell Faradaic efficiency of 154.8% and an ultrahigh H2O2 production rate of 4.3 mmol h-1 cm-2. Experiments combined with theoretical analysis reveal the crucial role of oxygen vacancies in optimizing the adsorption of intermediates associated with the selective two-electron reaction pathways, thereby improving the activity and selectivity of the 2e- reaction processes at both electrodes. This work establishes a new paradigm for developing advanced electrocatalysts and designing novel paired-electrolysis systems for scalable and sustainable H2O2 electrosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光催化H2O2生产作为工业蒽醌氧化过程的替代方法已经引起了很多关注,但是由于催化剂和反应物之间的弱相互作用以及低效的质子转移而受到限制。在这里,我们报告了在不使用任何牺牲剂的情况下,在氮化碳中使用氢键破坏策略来增强H2O2的光合作用。氢键断裂的氮化碳和H2O分子上暴露的N原子之间的氢键形成促进了H2O2的光合作用,这增强了质子耦合的电子转移,从而提高了光催化活性。暴露的N原子用作质子从H2O分子转移到氮化碳的质子缓冲位点。通过增强O2气体在氢键断裂的碳氮化物上向H2O2的吸附和还原,H2O2的光合作用也得到了增强,这是因为在碳氮化物上的层内氢键断裂后形成了氮空位(NVs)和氰基。实现了3.85%的高光-化学转化效率(LCCE)值。发现O2和H2O分子通过光生热电子和四电子氧化过程经历一步两电子还原途径以产生O2气体,分别。密度泛函理论(DFT)计算验证了O2吸附和反应途径。这项研究阐明了催化剂和反应物之间氢键形成的意义,这大大增加了质子隧穿动力学。
    Photocatalytic H2O2 production has attracted much attention as an alternative way to the industrial anthraquinone oxidation process but is limited by the weak interaction between the catalysts and reactants as well as inefficient proton transfer. Herein, we report on a hydrogen-bond-broken strategy in carbon nitride for the enhancement of H2O2 photosynthesis without any sacrificial agent. The H2O2 photosynthesis is promoted by the hydrogen bond formation between the exposed N atoms on hydrogen-bond-broken carbon nitride and H2O molecules, which enhances proton-coupled electron transfer and therefore the photocatalytic activity. The exposed N atoms serve as proton buffering sites for the proton transfer from H2O molecules to carbon nitride. The H2O2 photosynthesis is also enhanced through the enhanced adsorption and reduction of O2 gas toward H2O2 on hydrogen-bond-broken carbon nitride because of the formation of nitrogen vacancies (NVs) and cyano groups after the intralayer hydrogen bond breaking on carbon nitride. A high light-to-chemical conversion efficiency (LCCE) value of 3.85% is achieved. O2 and H2O molecules are found to undergo a one-step two-electron reduction pathway by photogenerated hot electrons and a four-electron oxidation process to produce O2 gas, respectively. Density functional theory (DFT) calculations validate the O2 adsorption and reaction pathways. This study elucidates the significance of the hydrogen bond formation between the catalyst and reactants, which greatly increases the proton tunneling dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可见光驱动的过氧化氢(H2O2)的光催化生产是目前将太阳能转化为化学能的新兴方法。总的来说,光催化生产H2O2的过程包括两个途径:水氧化反应(WOR)和氧还原反应(ORR)。然而,ORR的利用效率超过WOR,导致与天然水中低氧水平的差异,从而阻碍了它们的实际应用。在这里,我们报道了一种新型的供体-桥-受体(D-B-A)有机聚合物,通过Sonogashira-Hagihara偶联反应与四苯基乙烯(TPE)单元作为电子供体,乙炔(A)作为连接体,芘(P)部分作为电子受体。值得注意的是,所得的TPE-A-P表现出1.65%的显着太阳能到化学转化率和高BET比表面积(1132m2·g-1)。此外,即使在厌氧条件下,它显示出令人印象深刻的H2O2光合效率为1770μmolg-1h-1,超过了先前报道的绝大多数H2O2光合系统。出色的性能归因于电子和空穴的有效分离,随着足够的反应位点的存在促进了炔基电子桥的结合。该协议提出了一种通过水氧化反应产生H2O2的成功方法,标志着在自然环境中的实际应用取得了重大进展。
    The visible-light-driven photocatalytic production of hydrogen peroxide (H2O2) is currently an emerging approach for transforming solar energy into chemical energy. In general, the photocatalytic process for producing H2O2 includes two pathways: the water oxidation reaction (WOR) and the oxygen reduction reaction (ORR). However, the utilization efficiency of ORR surpasses that of WOR, leading to a discrepancy with the low oxygen levels in natural water and thereby impeding their practical application. Herein, we report a novel donor-bridge-acceptor (D-B-A) organic polymer conjugated by the Sonogashira-Hagihara coupling reaction with tetraphenylethene (TPE) units as the electron donors, acetylene (A) as the connectors and pyrene (P) moieties as the electron acceptors. Notably, the resulting TPE-A-P exhibits a remarkable solar-to-chemical conversion of 1.65% and a high BET-specific surface area (1132 m2·g-1). Furthermore, even under anaerobic conditions, it demonstrates an impressive H2O2 photosynthetic efficiency of 1770 μmol g-1 h-1, exceeding the vast majority of previously reported photosynthetic systems of H2O2. The outstanding performance is attributed to the effective separation of electrons and holes, along with the presence of sufficient reaction sites facilitated by the incorporation of alkynyl electronic bridges. This protocol presents a successful method for generating H2O2 via a water oxidation reaction, signifying a significant advancement towards practical applications in the natural environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    构建阳极电Fenton系统的关键取决于两个关键标准:提高水氧化反应(WOR)中的催化剂活性和选择性,同时抑制在阳极现场电合成的过氧化氢(H2O2)的分解。为了解决这些问题,我们合成了新型WO3/SnO2-x电催化剂,富含氧空位,利用WO3和SnO2-x的结合活性和选择性优势,进行双电子途径电催化生产H2O2。此外,氧空位的引入在阻碍H2O2分解中起着至关重要的作用。这种创新的设计确保了法拉第效率和H2O2的产率保持在80%以上,值得注意的生产速率为0.2mmolh-1cm-2。我们构建了一种新型的电Fenton系统,该系统仅使用H2O作为原料运行,并将其用于处理火箭发射流出物中的高毒性均匀二甲基肼(UDMH)。我们的实验显示了大量的总有机碳(TOC)去除,在120分钟的治疗后达到约90%。此外,N-亚硝基二甲胺(NDMA)的毒性,非常关注的副产品,被证明是有效缓解的,使用斑马鱼胚胎的急性毒性评估证明了这一点。UDMH的降解机理主要表现为H2O2和羟基自由基的高级氧化作用,以及需要进一步研究的复杂电子转移过程。
    The key to constructing an anodic electro-Fenton system hinges on two pivotal criteria: enhancing the catalyst activity and selectivity in water oxidation reaction (WOR), while simultaneously inhibiting the decomposition of hydrogen peroxide (H2O2) which is on-site electrosynthesized at the anode. To address the issues, we synthesized novel WO3/SnO2-x electrocatalysts, enriched with oxygen vacancies, capitalize on the combined activity and selectivity advantages of both WO3 and SnO2-x for the two-electron pathway electrocatalytic production of H2O2. Moreover, the introduction of oxygen vacancies plays a critical role in impeding the decomposition of H2O2. This innovative design ensures that the Faraday efficiency and yield of H2O2 are maintained at over 80 %, with a noteworthy production rate of 0.2 mmol h-1 cm-2. We constructed a novel electro-Fenton system that operates using only H2O as its feedstock and applied it to treat highly toxic uniform dimethylhydrazine (UDMH) from rocket launch effluent. Our experiments revealed a substantial total organic carbon (TOC) removal, achieving approximately 90 % after 120 mins of treatment. Additionally, the toxicity of N-nitrosodimethylamine (NDMA), a byproduct of great concern, was shown to be effectively mitigated, as evidenced by acute toxicity evaluations using zebrafish embryos. The degradation mechanism of UDMH is predominantly characterized by the advanced oxidative action of H2O2 and hydroxyl radicals, as well as by complex electron transfer processes that warrant further investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    镍铁氧/氢氧化物(NiFeOxHy)是一种有吸引力的碱性水氧化反应(WOR)的电催化剂,但是在稳定方面遇到了巨大的挑战,特别是在工业级大电流密度下,由于无法控制的Fe泄漏。这里,我们通过MXene介导的重构策略为所得NiFeOxHy催化剂定制Fe配位,以减轻Fe泄漏,从而增强WOR稳定性。在Ni-Fe普鲁士蓝类似物上的电化学重新配置中引入具有表面悬空键的超细MXene会诱导NiFeOxHy/MXene的共价杂交,这不仅加速了WOR动力学,而且提高了Fe对偏析的抗氧化性。因此,NiFeOxHy与MXene耦合,对于碱性WOR,在超过1,000h的安培级电流密度下具有非凡的耐用性,超电势仅为307mV。这项工作为镍铁催化剂向工业应用的发展提供了广阔的途径和机械见解。
    Nickel-iron oxy/hydroxides (NiFeOxHy) emerge as an attractive type of electrocatalysts for alkaline water oxidation reaction (WOR), but which encounter a huge challenge in stability, especially at industrial-grade large current density due to uncontrollable Fe leakage. Here, we tailor the Fe coordination by a MXene-mediated reconfiguration strategy for the resultant NiFeOxHy catalyst to alleviate Fe leakage and thus reinforce the WOR stability. The introduction of ultrafine MXene with surface dangling bonds in the electrochemical reconfiguration over Ni-Fe Prussian blue analogue induces the covalent hybridization of NiFeOxHy/MXene, which not only accelerates WOR kinetics but also improves Fe oxidation resistance against segregation. As a result, the NiFeOxHy coupled with MXene exhibits an extraordinary durability at ampere-level current density over 1,000 h for alkaline WOR with an ultralow overpotential of only 307 mV. This work provides a broad avenue and mechanistic insights for the development of nickel-iron catalysts toward industrial applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光催化技术被认为是生产H2O2的最清洁方法。在这里,两种用CQD装饰的新型聚酰亚胺COF(即,MPa-COFs/CQDs和MNd-COFs/CQDs)通过一锅法构建。由于CQDs的电子供体作用,聚酰亚胺COF与CQDs结合后,光诱导电子和空穴的复合受到抑制。重要的是,CQDs的引入不仅提高了聚酰亚胺COFs对可见光的吸收能力,而且降低了阻抗,提高了电荷转移效率。将CQD嵌入聚酰亚胺COF后,催化剂的表面亲水性显著提高,为水氧化反应提供了便利。受益于聚酰亚胺COFs和CQDs之间的电子供体-受体相互作用,在聚酰亚胺COFs上一步一步的双电子氧还原反应得到增强。更有趣的是,CQDs的嵌入可以产生直接的双电子水氧化反应途径,在光催化H2O2生成中发挥了重要作用。同时,由水氧化产生的H+也可用于还原氧形成H2O2。在水氧化和氧还原的协同作用下,制备的MPa-COFs/CQDs-2在光催化生成H2O2方面表现出优异的性能,在60分钟内其产率高达540μmol/g。总之,目前的工作分享了一个有效的策略来提高聚酰亚胺COFs在光催化H2O2生产中的性能。
    Photocatalytic technique is regarded as the cleanest approach for producing H2O2. Herein, two kinds of novel polyimide COFs decorated with CQDs (namely, MPa-COFs/CQDs and MNd-COFs/CQDs) were constructed by using the one-pot hydrothermal method. Due to the electron donor role of CQDs, the recombination of photoinduced electrons and holes was suppressed after the combination of polyimide COFs with CQDs. Importantly, the introduction of CQDs not only boosted the absorbing ability of polyimide COFs toward visible light but also reduced the impedance and improved the charge transfer efficiency. After CQDs were embedded into polyimide COFs, the surface hydrophilicity of catalysts was significantly improved, which provided convenience for the water oxidation reaction. Benefiting from the electron donor-acceptor interaction between polyimide COFs and CQDs, a step-by-step two-electron oxygen reduction reaction over polyimide COFs was enhanced. More interestingly, the embedding of CQDs can create a direct two-electron water oxidation reaction pathway, which played an important role in photocatalytic H2O2 generation. Meanwhile, H+ generated from water oxidation can also be used for the reduction of oxygen to form H2O2. Under the synergistic effects of water oxidation and oxygen reduction, as-prepared MPa-COFs/CQDs-2 displayed excellent performance in photocatalytic H2O2 generation, and its yield was as high as 540 μmol/g within 60 min. In short, the current work shared an effective strategy to improve the performance of polyimide COFs in photocatalytic H2O2 production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    H2O2是一种重要的化学品,广泛应用于环境和工业领域。随着全球需求的增长。没有牺牲剂,通过氧气还原反应(ORR)和水氧化反应(WOR)双通道从海水中同时光催化合成H2O2是绿色和可持续的,但仍然具有挑战性。在这里,首先构建了两种新型的含噻吩的共价有机骨架(TD-COF和TT-COF),并通过间接2e-ORR和直接2e-WOR通道作为H2O2合成的催化剂。可以通过调节COF中的N-杂环模块(吡啶和三嗪)来调节光催化H2O2的生产性能。值得注意的是,没有牺牲剂,只使用空气和水作为原料,TD-COF在去离子水和天然海水中表现出4060μmolh-1g-1和3364μmolh-1g-1的高H2O2产量,分别。进一步的计算机理研究表明,噻吩是ORR的主要光还原单元,而苯环(通过亚胺键连接到噻吩)是WOR的中心光氧化单元。目前的工作利用含噻吩的COF通过ORR和WOR双通道进行整体光催化H2O2合成,并为创建用于光催化H2O2合成的创新催化剂提供了新的见解。
    H2 O2 is a significant chemical widely utilized in the environmental and industrial fields, with growing global demand. Without sacrificial agents, simultaneous photocatalyzed H2 O2 synthesis through the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) dual channels from seawater is green and sustainable but still challenging. Herein, two novel thiophene-containing covalent organic frameworks (TD-COF and TT-COF) were first constructed and served as catalysts for H2 O2 synthesis via indirect 2e- ORR and direct 2e- WOR channels. The photocatalytic H2 O2 production performance can be regulated by adjusting the N-heterocycle modules (pyridine and triazine) in COFs. Notably, with no sacrificial agents, just using air and water as raw materials, TD-COF exhibited high H2 O2 production yields of 4060 μmol h-1  g-1 and 3364 μmol h-1  g-1 in deionized water and natural seawater, respectively. Further computational mechanism studies revealed that the thiophene was the primary photoreduction unit for ORR, while the benzene ring (linked to the thiophene by the imine bond) was the central photooxidation unit for WOR. The current work exploits thiophene-containing COFs for overall photocatalytic H2 O2 synthesis via ORR and WOR dual channels and provides fresh insight into creating innovative catalysts for photocatalyzing H2 O2 synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有原位工程任务特定位点的多面金属有机框架(MOF)的开发可以保证熟练的析氧反应(OER)和高温吸附以及CO2的温和固定。事实上,考虑到可再生能源的应用和减少碳足迹,将这些属性有效地吸收到具有先进性能特征的单一材料上实际上是必要的。在这里,我们开发了一种三重互穿的强大的Co(II)框架,该框架涵盖了微孔通道内的氧化还原活性和氢键供体部分。活化的MOF通过准可逆的Co2/Co3对在碱性介质中表现出明显的OER催化作用,并以令人印象深刻的53.5mV/decTafel斜率展现低超电势,可压倒某些基准,商业,以及当代材料。特别是,与Co3O4、NiO、和大多数氧化还原活性的MOFs以及91%的法拉第效率和显着的框架耐久性在多个OER循环后支持高性能水氧化。即使在升高的温度下,具有相当大的MOF-CO2相互作用的孔壁甲板尿素基团也有益于可观的CO2吸附,并且在不同温度下表现出反复的捕获释放循环。有趣的是,随着温度的升高,CO2选择性表现出激进的上升,在313K时提供40%改善的CO2/N2值为200,它的性能优于许多多孔吸附剂,并描绘了实时二氧化碳清除潜力。无客体MOF在相对温和的条件下有效催化无溶剂CO2环加成,具有宽的底物耐受性和令人满意的可重用性。与常见的路易斯酸介导的反应相反,两点氢键激活底物,作为对照实验的支持,将未官能化MOF的性能与荧光修饰衍生的骨架-环氧化物相互作用并置,为MOF中非常规环加成途径提供有价值的见解。
    Development of the multifaceted metal-organic framework (MOF) with in situ engineered task-specific sites can promise proficient oxygen evolution reaction (OER) and high-temperature adsorption cum mild-condition fixation of CO2. In fact, effective assimilation of these attributes onto a single material with advance performance characteristics is practically imperative in view of renewable energy application and carbon-footprint reduction. Herein, we developed a three-fold interpenetrated robust Co(II) framework that embraces both redox-active and hydrogen-bond donor moieties inside the microporous channel. The activated MOF demonstrates notable OER catalysis in alkaline medium via quasi-reversible Co2+/Co3+ couple and unveils low overpotential with impressive 53.5 mV/dec Tafel slope that overpowers some benchmark, commercial, as well as contemporary materials. In particular, significantly increased turnover frequency (3.313 s-1 at 400 mV) and fairly low charge-transfer resistance (3.02 Ω) compared to Co3O4, NiO, and majority of redox-active MOFs together with 91% Faradaic efficiency and notable framework durability after multiple OER cycles endorse high-performance water oxidation. Pore-wall decked urea groups benefit appreciable CO2 adsorption even at elevated temperatures with considerable MOF-CO2 interactions and exhibit recurrent capture-release cycles at diverse temperatures. Interestingly, CO2 selectivity displays radical upsurge with temperature rise, affording 40% improved CO2/N2 value of 200 at 313 K, which outperforms many porous adsorbents and delineates real-time CO2 scavenging potential. The guest-free MOF effectively catalyzes solvent-free CO2 cycloaddition with broad substrate tolerance and satisfactory reusability under relatively mild condition. Opposed to the common Lewis acid-mediated reaction, two-point hydrogen-bonding activates the substrate, as supported from controlled experiments, juxtaposing the performance of an un-functionalized MOF and fluorescence modification-derived framework-epoxide interaction, providing valuable insights on unconventional cycloaddition route in the MOF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水氧化反应(或析氧反应,OER)在通过水分解的绿色制氢中起着至关重要的作用,电化学CO2还原,和固氮。四电子和四质子转移OER过程涉及多个反应中间体和基本步骤,导致动力学缓慢;因此,高过电位是驱动反应所必需的。在不同的水分解电解槽中,质子交换膜式电解槽具有更大的优势,但其阳极催化剂仅限于铱基材料。铱催化剂由于其对酸性OER的平衡活性和稳定性,近年来得到了广泛的研究,并取得了许多令人兴奋的进展迹象。在这次审查中,介绍了水溶液中铱物种的表面和块状Pourbaix图。铱基催化剂,包括金属或氧化物,无定形或结晶,单晶,原子分散或纳米结构,和OER的铱化合物,然后详细阐述。活跃网站的最新进展,反应中间体,反应动力学,并总结了基本步骤。最后,讨论了铱酸性OER催化剂的未来研究方向。
    The water oxidation reaction (or oxygen evolution reaction, OER) plays a critical role in green hydrogen production via water splitting, electrochemical CO2 reduction, and nitrogen fixation. The four-electron and four-proton transfer OER process involves multiple reaction intermediates and elementary steps that lead to sluggish kinetics; therefore, a high overpotential is necessary to drive the reaction. Among the different water-splitting electrolyzers, the proton exchange membrane type electrolyzer has greater advantages, but its anode catalysts are limited to iridium-based materials. The iridium catalyst has been extensively studied in recent years due to its balanced activity and stability for acidic OER, and many exciting signs of progress have been made. In this review, the surface and bulk Pourbaix diagrams of iridium species in an aqueous solution are introduced. The iridium-based catalysts, including metallic or oxides, amorphous or crystalline, single crystals, atomically dispersed or nanostructured, and iridium compounds for OER, are then elaborated. The latest progress of active sites, reaction intermediates, reaction kinetics, and elementary steps is summarized. Finally, future research directions regarding iridium catalysts for acidic OER are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水氧化由于其在水分解和金属-空气电池中的主要作用而变得非常流行。因此,高效的发展,丰富,和经济的催化剂,以及电极设计,今天要求很高。在这次审查中,我们讨论了电催化水氧化反应(WOR)的原理,最有效结果的电催化剂和电极设计策略,以及析氧反应(OER)催化剂设计的最新进展。最后,我们以SolaireInitiativePrivateLtd.的OMREDOX为例,讨论了OER在制氧机(OM)设计中的使用。该评论清楚地总结了未来的方向和可持续能源利用的应用,并借助水分解和前进的道路来开发具有电极和催化剂的更好的电池设计,用于实际应用。我们希望这次审查将提供对OER过程和WOR的基本了解,以及评估性能的标准参数,并鼓励更多基于WOR的深刻创新,以遵循OMREDOX的示例从实验室进入市场。
    Water oxidation has become very popular due to its prime role in water splitting and metal-air batteries. Thus, the development of efficient, abundant, and economical catalysts, as well as electrode design, is very demanding today. In this review, we have discussed the principles of electrocatalytic water oxidation reaction (WOR), the electrocatalyst and electrode design strategies for the most efficient results, and recent advancement in the oxygen evolution reaction (OER) catalyst design. Finally, we have discussed the use of OER in the Oxygen Maker (OM) design with the example of OM REDOX by Solaire Initiative Private Ltd. The review clearly summarizes the future directions and applications for sustainable energy utilization with the help of water splitting and the way forward to develop better cell designs with electrodes and catalysts for practical applications. We hope this review will offer a basic understanding of the OER process and WOR in general along with the standard parameters to evaluate the performance and encourage more WOR-based profound innovations to make their way from the lab to the market following the example of OM REDOX.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号