关键词: environmental chemistry hydrogen peroxide photocatalysis water oxidation reaction

来  源:   DOI:10.3390/ma17112709   PDF(Pubmed)

Abstract:
The visible-light-driven photocatalytic production of hydrogen peroxide (H2O2) is currently an emerging approach for transforming solar energy into chemical energy. In general, the photocatalytic process for producing H2O2 includes two pathways: the water oxidation reaction (WOR) and the oxygen reduction reaction (ORR). However, the utilization efficiency of ORR surpasses that of WOR, leading to a discrepancy with the low oxygen levels in natural water and thereby impeding their practical application. Herein, we report a novel donor-bridge-acceptor (D-B-A) organic polymer conjugated by the Sonogashira-Hagihara coupling reaction with tetraphenylethene (TPE) units as the electron donors, acetylene (A) as the connectors and pyrene (P) moieties as the electron acceptors. Notably, the resulting TPE-A-P exhibits a remarkable solar-to-chemical conversion of 1.65% and a high BET-specific surface area (1132 m2·g-1). Furthermore, even under anaerobic conditions, it demonstrates an impressive H2O2 photosynthetic efficiency of 1770 μmol g-1 h-1, exceeding the vast majority of previously reported photosynthetic systems of H2O2. The outstanding performance is attributed to the effective separation of electrons and holes, along with the presence of sufficient reaction sites facilitated by the incorporation of alkynyl electronic bridges. This protocol presents a successful method for generating H2O2 via a water oxidation reaction, signifying a significant advancement towards practical applications in the natural environment.
摘要:
可见光驱动的过氧化氢(H2O2)的光催化生产是目前将太阳能转化为化学能的新兴方法。总的来说,光催化生产H2O2的过程包括两个途径:水氧化反应(WOR)和氧还原反应(ORR)。然而,ORR的利用效率超过WOR,导致与天然水中低氧水平的差异,从而阻碍了它们的实际应用。在这里,我们报道了一种新型的供体-桥-受体(D-B-A)有机聚合物,通过Sonogashira-Hagihara偶联反应与四苯基乙烯(TPE)单元作为电子供体,乙炔(A)作为连接体,芘(P)部分作为电子受体。值得注意的是,所得的TPE-A-P表现出1.65%的显着太阳能到化学转化率和高BET比表面积(1132m2·g-1)。此外,即使在厌氧条件下,它显示出令人印象深刻的H2O2光合效率为1770μmolg-1h-1,超过了先前报道的绝大多数H2O2光合系统。出色的性能归因于电子和空穴的有效分离,随着足够的反应位点的存在促进了炔基电子桥的结合。该协议提出了一种通过水氧化反应产生H2O2的成功方法,标志着在自然环境中的实际应用取得了重大进展。
公众号