viral vaccines

病毒疫苗
  • 文章类型: Journal Article
    背景:信使RNA(mRNA)疫苗是对抗感染的有力工具。与传统疫苗不同,这种独特类型的疫苗通过独特的宿主细胞介导的病原体基因表达和抗原呈递引发强大而持久的先天和体液免疫应答.
    方法:这提供了一种新的方法来对抗痘病毒科感染。从牛痘和痘病毒的基因组中,三个关键基因(E8L,E7R,选择负责病毒附着和毒力的H3L),并用于设计针对牛痘和水痘病毒感染的候选mRNA疫苗。各种生物信息学工具被用来产生(B细胞,CTL,和HTL)表位,选择其中的28个抗原性和免疫原性表位并连接以形成mRNA疫苗构建体。附加组件,包括一个5'帽子,5\'UTR,佐剂,3\'UTR,和聚(A)尾巴,被纳入以增强稳定性和有效性。实施了安全措施,如人体同源性测试和计算机模拟免疫模拟,以避免自身免疫,并模拟人宿主对设计的mRNA疫苗的免疫反应。分别。通过将其与TLR-2、TLR-3、TLR-4和TLR-9受体对接来评估mRNA疫苗的结合亲和力,随后进行分子动力学模拟以预测结合复合物的稳定性。
    结果:人口覆盖率为73%,mRNA疫苗看起来很有前途,分子量为198kDa,分子式为C8901H13609N2431O2611S48,据说具有抗原性,无毒和不过敏,使其安全有效地预防水痘和牛痘病毒感染,与其他insilico设计的痘苗和痘病毒疫苗相比。
    结论:然而,正在通过体内和体外技术进行进一步验证,以充分评估其潜力。
    BACKGROUND: Messenger RNA (mRNA) vaccines emerged as a powerful tool in the fight against infections. Unlike traditional vaccines, this unique type of vaccine elicits robust and persistent innate and humoral immune response with a unique host cell-mediated pathogen gene expression and antigen presentation.
    METHODS: This offers a novel approach to combat poxviridae infections. From the genome of vaccinia and Mpox viruses, three key genes (E8L, E7R, and H3L) responsible for virus attachment and virulence were selected and employed for designing the candidate mRNA vaccine against vaccinia and Mpox viral infection. Various bioinformatics tools were employed to generate (B cell, CTL, and HTL) epitopes, of which 28 antigenic and immunogenic epitopes were selected and are linked to form the mRNA vaccine construct. Additional components, including a 5\' cap, 5\' UTR, adjuvant, 3\' UTR, and poly(A) tail, were incorporated to enhance stability and effectiveness. Safety measures such as testing for human homology and in silico immune simulations were implemented to avoid autoimmunity and to mimics the immune response of human host to the designed mRNA vaccine, respectively. The mRNA vaccine\'s binding affinity was evaluated by docking it with TLR-2, TLR-3, TLR-4, and TLR-9 receptors which are subsequently followed by molecular dynamics simulations for the highest binding one to predict the stability of the binding complex.
    RESULTS: With a 73% population coverage, the mRNA vaccine looks promising, boasting a molecular weight of 198 kDa and a molecular formula of C8901H13609N2431O2611S48 and it is said to be antigenic, nontoxic and nonallergic, making it safe and effective in preventing infections with Mpox and vaccinia viruses, in comparison with other insilico-designed vaccine for vaccinia and Mpox viruses.
    CONCLUSIONS: However, further validation through in vivo and in vitro techniques is underway to fully assess its potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    免疫印记是一种源于免疫记忆基础的现象。在反复暴露于进化的病原体时,免疫系统必须权衡快速回忆已建立的抗体库的好处,对初始变体具有更大的亲和力,或者投入额外的时间和精力来产生对新出现的变体具有特异性的从头反应。在这次审查中,我们深入研究了免疫印迹的机制复杂性及其在塑造随后的免疫反应中的作用,从头和回忆,对抗快速进化的呼吸道病毒,如流感和冠状病毒。通过探索免疫印记的双重性,我们研究了它增强或阻碍对疾病的免疫保护的潜力,同时强调宿主和病毒因子的作用。最后,我们探讨了不同的疫苗平台可能如何影响免疫印迹,并评论了可能有利于从头变体特异性抗体反应的疫苗策略.
    Immune imprinting is a phenomenon that stems from the fundamentals of immunological memory. Upon recurrent exposures to an evolving pathogen, the immune system must weigh the benefits of rapidly recalling established antibody repertoires with greater affinity to the initial variant or invest additional time and energy in producing de novo responses specific to the emerging variant. In this review, we delve into the mechanistic complexities of immune imprinting and its role in shaping subsequent immune responses, both de novo and recall, against rapidly evolving respiratory viruses such as influenza and coronaviruses. By exploring the duality of immune imprinting, we examine its potential to both enhance or hinder immune protection against disease, while emphasizing the role of host and viral factors. Finally, we explore how different vaccine platforms may affect immune imprinting and comment on vaccine strategies that can favor de novo variant-specific antibody responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response (\"protective genes\"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
    Plataformas tecnológicas de vacunas avícolas En este artículo se revisan las diferentes plataformas tecnológicas utilizadas para elaborar vacunas avícolas. Las vacunas basadas en tecnologías clásicas son vacunas vivas atenuadas o inactivadas. La ingeniería genética se aplica al diseño mediante eliminación, mutación, inserción o quimerización de microorganismos diana genéticamente modificados que se utilizan como vacunas vivas o inactivadas. Otras plataformas de vacunas se basan en uno o varios genes del agente patógeno objetivo que codifican proteínas que pueden inducir una respuesta inmunitaria protectora (“genes protectores”). Estos genes pueden expresarse in vitro para producir vacunas de subunidades. Alternativamente, los vectores que llevan estos genes en su genoma o las vacunas basadas en ácidos nucleicos inducirán protección mediante la expresión in vivo de estos genes en el huésped vacunado. Se revisan las propiedades de estos diferentes tipos de vacunas, incluidas sus ventajas y limitaciones, centrándose principalmente en las vacunas dirigidas a enfermedades virales y en las tecnologías que lograron la autorización de comercialización.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    We previously demonstrated that a prime-boost regime with an infectious bronchitis virus (IBV) Massachusetts (Mass)-type vaccine and recombinant LaSota virus (rLS) coexpressing IBV Arkansas (Ark)-type trimeric spike ectodomain (Se) and granulocyte macrophage colony stimulating factor (GMCSF) enhances heterologous protection against virulent Ark challenge. This study evaluates protection against Ark-type challenge conferred by administering the rLS/ArkSe.GMCSF and the attenuated Mass viruses mixed in the same vial as a combined vaccine. Chickens were vaccinated at day of hatch and challenged at 21 days of age with virulent Ark. Protection conferred by vaccination was assessed by respiratory signs, tracheal virus isolation as well as IBV RNA quantitation, and tracheal histomorphometry. Protection conferred by the combined vaccine was compared to protection induced by a commercial attenuated ArkDPI (Delmarva Poultry Industry) vaccine as well as by the attenuated Mass vaccine alone. Vaccination with the combined vaccine (rLS/ArkSe.GMCSF + Mass) as well as Mass alone provided significantly less protection against Ark challenge compared to the control using attenuated live ArkDPI vaccine. Only ArkDPI-vaccinated chickens exhibited \"sterilizing immunity,\" i.e., no virus isolated from ≥10% of chickens after challenge. Chickens vaccinated with the combined vaccine rLS/ArkSe.GMCSF + Mass showed significantly less tracheal damage than birds vaccinated with the attenuated Mass vaccine alone. In addition, the combined vaccine also resulted in less virus isolation from the trachea. We concluded that the combined vaccine containing the recombinant virus and the attenuated Mass enhanced the cross-protective ability of the attenuated Mass vaccine against heterologous challenge.
    Nota de investigación- Protección cruzada conferida por una vacuna combinada que contiene el virus atenuado de la bronquitis infecciosa serotipo Massachusetts y un virus de Newcastle LaSota recombinante que expresa la proteína de la espícula del serotipo Arkansas. Previamente se demostró que un esquema de refuerzo con una vacuna tipo Massachusetts (Mass) del virus de la bronquitis infecciosa (IBV) y con un virus de Newcastle LaSota recombinante (rLS) que co-expresa el ectodominio de pico trimérico del serotipo Arkansas (Ark) del virus de la bronquitis infecciosa (Se) y el factor de estimulación de colonias de granulocitos y macrófagos (GMCSF) (virus rLS/ArkSe.GMCSF) mejora la protección heteróloga contra el desafío con serotipo Arkansas virulento. Este estudio evaluó la protección contra el desafío con el serotipo Arkansas conferida por la administración del virus recombinante rLS/ArkSe.GMCSF y el virus Massachussets atenuado mezclados en el mismo vial como una vacuna combinada. Los pollos se vacunaron el día de la eclosión y se desafiaron a los 21 días de edad con el serotipo Arkansas virulento. La protección conferida por la vacunación se evaluó mediante signos respiratorios, el aislamiento del virus traqueal, cuantificación del ARN del virus de bronquitis y por histomorfometría traqueal. La protección conferida por la vacuna combinada se comparó con la protección inducida por una vacuna comercial atenuada ArkDPI (Delmarva Poultry Industry), y con la vacuna atenuada Massachussets por si sola. La vacunación con la vacuna combinada (rLS/ArkSe.GMCSF + Mass), así como con Massachussets sola, proporcionó una protección significativamente menor contra la exposición con Arkansas en comparación con el control que utilizó la vacuna ArkDPI viva atenuada. Solo los pollos vacunados con ArkDPI exhibieron “inmunidad esterilizante”, es decir, que no se aisló ningún virus en ≥10 % de los pollos después del desafío. Los pollos vacunados con la vacuna combinada rLS/ArkSe.GMCSF + Mass mostraron significativamente menos daño traqueal que las aves vacunadas con la vacuna Massachusetts atenuada sola. Además, la vacuna combinada también resultó en un menor aislamiento del virus de la tráquea. Se concluye que la vacuna combinada que contiene el virus recombinante y el serotipo Massachussets atenuado mejoró la capacidad de protección cruzada de la vacuna de Massachusetts atenuada contra el desafío heterólogo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    马尔堡病毒(MARV),丝状病毒,1967年在马尔堡首次被发现,德国,贝尔格莱德,前南斯拉夫。从那以后,MARV在非洲部分地区引起了人类疾病的零星爆发,病死率很高,最大的疫情发生在2004/05年安哥拉。从2021年到2023年,几内亚发生了MARV疫情,加纳,几内亚,坦桑尼亚,强调将其流行区扩展到新的地理区域。目前没有批准的针对MARV的疫苗或疗法,但是几种候选疫苗在临床前研究中显示出了希望。我们通过给仓鼠接种单剂量的腺病毒(ChAdOx-1MARV)疫苗,同时比较了三种疫苗平台,一种基于甲病毒复制子的RNA(LION-MARV)疫苗,或重组水泡性口炎病毒(VSV-MARV)疫苗,都表达MARV糖蛋白作为抗原。接种后4周用仓鼠适应的MARV进行致命攻击导致VSV-MARV和LION-MARV组和ChAdOx-1MARV组的83%的保护。对抗原特异性体液反应及其功能的评估揭示了疫苗平台依赖性的差异,特别是在Fc效应子功能中。
    Marburg virus (MARV), a filovirus, was first identified in 1967 in Marburg, Germany, and Belgrade, former Yugoslavia. Since then, MARV has caused sporadic outbreaks of human disease with high case fatality rates in parts of Africa, with the largest outbreak occurring in 2004/05 in Angola. From 2021 to 2023, MARV outbreaks occurred in Guinea, Ghana, New Guinea, and Tanzania, emphasizing the expansion of its endemic area into new geographical regions. There are currently no approved vaccines or therapeutics targeting MARV, but several vaccine candidates have shown promise in preclinical studies. We compared three vaccine platforms simultaneously by vaccinating hamsters with either a single dose of an adenovirus-based (ChAdOx-1 MARV) vaccine, an alphavirus replicon-based RNA (LION-MARV) vaccine, or a recombinant vesicular stomatitis virus-based (VSV-MARV) vaccine, all expressing the MARV glycoprotein as the antigen. Lethal challenge with hamster-adapted MARV 4 weeks after vaccination resulted in uniform protection of the VSV-MARV and LION-MARV groups and 83% of the ChAdOx-1 MARV group. Assessment of the antigen-specific humoral response and its functionality revealed vaccine-platform-dependent differences, particularly in the Fc effector functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    有效疫苗递送的一个主要限制是其对稳健的冷链基础设施的依赖性。虽然水泡性口炎病毒(VSV)已被证明是包括埃博拉在内的疾病的有效病毒疫苗载体,其-70°C存储要求是访问弱势位置和人口的重大限制。先前的工作已经显示了具有支链淀粉和海藻糖(PT)干燥膜的组合的病毒疫苗的热稳定性。为了提高VSV的热稳定性,我们优化了PT配方的浓度和成分,以及增强真空干燥的干燥方法。当配制在PT薄膜中时,VSV可以在4°C下储存32周,PFU损失小于2log,在25°C下,PFU损失为2.5log,并且在37°C下具有3.1logPFU损失。这些结果证明了VSV热稳定性的显著进步,降低VSV载体疫苗的冷链需求。
    One major limitation of effective vaccine delivery is its dependency on a robust cold chain infrastructure. While Vesicular stomatitis virus (VSV) has been demonstrated to be an effective viral vaccine vector for diseases including Ebola, its -70 °C storage requirement is a significant limitation for accessing disadvantaged locations and populations. Previous work has shown thermal stabilization of viral vaccines with a combination of pullulan and trehalose (PT) dried films. To improve the thermal stability of VSV, we optimized PT formulation concentrations and components, as well as drying methodology with enhanced vacuum drying. When formulated in PT films, VSV can be stored for 32 weeks at 4 °C with less than 2 log PFU loss, at 25 °C with 2.5 log PFU loss, and at 37 °C with 3.1 log PFU loss. These results demonstrate a significant advancement in VSV thermal stabilization, decreasing the cold chain requirements for VSV vectored vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: News
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    原型病原体和疫苗平台方法使最近对严重急性呼吸道综合症冠状病毒2的出现和快速反应成为可能,在RNA疫苗技术对相关中东呼吸综合征冠状病毒的抢先应用的推动下。最近,美国国家过敏和传染病研究所确定了9个值得关注的病毒家族,八个包膜病毒家族和一个无包膜病毒家族,疫苗生产是优先事项。尽管RNA疫苗已经被描述用于多种包膜病毒,缺乏针对无包膜病毒的使用路线图。肠道病毒D68由于其快速进化和呼吸道传播途径,最近被指定为无包膜病毒小RNA科的原型病原体。再加上缺乏不同的抗肠道病毒疫苗方法的发展。这里,我们描述了一种使用临床阶段RNA疫苗平台的概念验证方法,该方法在小鼠和非人灵长类动物中诱导了强大的肠道病毒D68中和抗体反应,并在小鼠中预防了上呼吸道和下呼吸道感染和神经系统疾病.此外,我们使用我们的平台快速表征了肠道病毒D686种基因型中的抗原多样性,提供了必要的数据来告知多价疫苗组合物,这些组合物可以引发最佳宽度的中和反应.这些结果表明,RNA疫苗可以用作我们的无包膜病毒大流行准备工具箱中的工具。
    The recent emergence and rapid response to severe acute respiratory syndrome coronavirus 2 was enabled by prototype pathogen and vaccine platform approaches, driven by the preemptive application of RNA vaccine technology to the related Middle East respiratory syndrome coronavirus. Recently, the National Institutes of Allergy and Infectious Diseases identified nine virus families of concern, eight enveloped virus families and one nonenveloped virus family, for which vaccine generation is a priority. Although RNA vaccines have been described for a variety of enveloped viruses, a roadmap for their use against nonenveloped viruses is lacking. Enterovirus D68 was recently designated a prototype pathogen within the family Picornaviridae of nonenveloped viruses because of its rapid evolution and respiratory route of transmission, coupled with a lack of diverse anti-enterovirus vaccine approaches in development. Here, we describe a proof-of-concept approach using a clinical stage RNA vaccine platform that induced robust enterovirus D68-neutralizing antibody responses in mice and nonhuman primates and prevented upper and lower respiratory tract infections and neurological disease in mice. In addition, we used our platform to rapidly characterize the antigenic diversity within the six genotypes of enterovirus D68, providing the necessary data to inform multivalent vaccine compositions that can elicit optimal breadth of neutralizing responses. These results demonstrate that RNA vaccines can be used as tools in our pandemic-preparedness toolbox for nonenveloped viruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    传染性法氏囊病(IBD)是养禽业普遍存在的问题,疫苗接种是主要的预防方法。然而,中等毒性疫苗可能会损害法氏囊,需要开发安全有效的疫苗。新城疫病毒(NDV)已被用作疫苗开发的载体。在这项研究中,利用反向遗传技术获得了三种重组病毒,即,rClone30-VP2L(P/M)-chGM-CSF(NP),rClone30-chGM-CSF(P/M)-VP2L(NP),和rClone30-VP2L-chGM-CSF(P/M)。动物实验表明,3种生物佐剂双价疫苗均能有效提高抗NDV和抗传染性法氏囊病病毒(IBDV)滴度,增强鸡的体液和细胞免疫反应,而不会导致任何伤害。在三种生物佐剂二价疫苗中,首次免疫后14天,rClone30-chGM-CSF(P/M)-VP2L(NP)组抗NDV抗体水平较高,并在7-10天内刺激更大的体液免疫应答.同时,rClone30-VP2L(P/M)-chGM-CSF(NP)组最有效地产生更高水平的IBDV抗体反应。总之,这三种疫苗可以更快速有效地诱导免疫反应,简化生产流程,具有成本效益,为新城疫(ND)和IBD双价疫苗的研制提供了新的途径。
    Infectious bursal disease (IBD) is a widespread problem in the poultry industry, and vaccination is the primary preventive method. However, moderately virulent vaccines may damage the bursa, necessitating the development of a safe and effective vaccine. The Newcastle disease virus (NDV) has been explored as a vector for vaccine development. In this study, reverse genetic technology was used to obtain three recombinant viruses, namely, rClone30-VP2L (P/M)-chGM-CSF (NP), rClone30-chGM-CSF (P/M)-VP2L (NP), and rClone30-VP2L-chGM-CSF (P/M). Animal experiments showed that the three biological adjuvant bivalent vaccines effectively increased anti-NDV and anti-infectious bursal disease virus (IBDV) titres, enhancing both humoral and cellular immune responses in chickens without leading to any harm. Amongst the three biological adjuvant bivalent vaccines, the rClone30-chGM-CSF (P/M)-VP2L (NP) group had higher levels of anti-NDV antibodies at 14 days after the first immunization and stimulated a greater humoral immune response in 7-10 days. While, the rClone30-VP2L (P/M)-chGM-CSF (NP) group was the most effective in producing a higher level of IBDV antibody response. In conclusion, these three vaccines can induce immune responses more rapidly and effectively, streamline production processes, be cost-effective, and provide a new avenue for the development of Newcastle disease (ND) and IBD bivalent vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    加强畜牧业生物安全对保障农民生计至关重要,全球和地方经济,和粮食安全。疫苗接种是控制和预防外来和地方性高度优先传染病的基础。在生物安全计划中成功实施疫苗接种的基础是对保护相关因素的深刻理解,这些因素可以可靠地预测病毒攻击的保护水平。虽然许多人类病毒疫苗已成功表征了保护的相关性,对于许多高度优先的牲畜病毒性疾病,包括非洲猪瘟和口蹄疫,他们基本上没有特色。目前的文献提供了关于在这些高优先级哺乳动物家畜病毒性疾病的疫苗开发过程中应评估的保护的潜在相关性的见解。为生物安全目的建立相关的保护能够实现免疫监视,疫苗开发的基本原理,和成功实施牲畜疫苗作为生物安全战略的一部分。
    Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers, global and local economies, and food security. Vaccination is fundamental to the control and prevention of exotic and endemic high-priority infectious livestock diseases. Successful implementation of vaccination in a biosecurity plan is underpinned by a strong understanding of correlates of protection-those elements of the immune response that can reliably predict the level of protection from viral challenge. While correlates of protection have been successfully characterized for many human viral vaccines, for many high-priority livestock viral diseases, including African swine fever and foot and mouth disease, they remain largely uncharacterized. Current literature provides insights into potential correlates of protection that should be assessed during vaccine development for these high-priority mammalian livestock viral diseases. Establishment of correlates of protection for biosecurity purposes enables immune surveillance, rationale for vaccine development, and successful implementation of livestock vaccines as part of a biosecurity strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号