vinculin

vinculin
  • 文章类型: Journal Article
    细胞感知和响应机械力的能力在许多生理和病理过程中是至关重要的。然而,确定力影响细胞内蛋白质功能的机制仍然具有挑战性。受荧光蛋白(FPs)经历荧光可逆机械切换的体外演示的启发,我们研究了是否可以在细胞中观察到FP功能的力敏感变化.以FP机械切换的计算模型为指导,我们开发了一种形式主义,用于在基于Förster共振能量转移(FRET)的生物传感器中进行检测,并证明了其在合成肌动蛋白交联剂和机械接头蛋白vinculin中的细胞中的出现。我们发现,在细胞中,机械转换是可逆的,并且通过操纵细胞力的产生而改变,外部刚度,和生物传感器的力敏键动力学。这项工作描述了评估FP机械稳定性的框架,并提供了一种探测细胞内力敏感蛋白功能的方法。
    The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, determining the mechanisms by which forces affect protein function inside cells remains challenging. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated whether force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo within a synthetic actin crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cell force generation, external stiffness, and force-sensitive bond dynamics of the biosensor. This work describes a framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质感知和传递机械力的能力是许多生物过程的基础,但是在生物系统中表征这些力量仍然是一个挑战。现有的遗传编码力传感器通常依赖于荧光或生物发光共振能量转移(FRET或BRET)来可视化张力。然而,这些力传感模块相对较大,和解释测量需要专门的图像分析和仔细的控制实验。这里,我们报告了一种紧凑型分子张力传感器,它响应张力而产生生物发光信号。该传感器(称为PILATeS)利用分裂的NanoLuc荧光素酶,并由智人肌动蛋白I10结构域组成,插入了源自NanoLuc的C末端β链的10-15个氨基酸标签。跨PILATeS的机械负荷介导该标签的暴露,以招募互补分裂的NanoLuc片段,导致力依赖的生物发光。我们证明了PILATeS通过可视化整合素和细胞外基质底物之间的界面上的力来报告生物学上有意义的力的能力。我们进一步使用PILATeS作为机械传感蛋白vinculin所经历的张力的遗传编码传感器。我们预计PILATeS将提供一种可视化生物系统中分子规模力的方法。
    The ability of proteins to sense and transmit mechanical forces underlies many biological processes, but characterizing these forces in biological systems remains a challenge. Existing genetically encoded force sensors typically rely on fluorescence or bioluminescence resonance energy transfer (FRET or BRET) to visualize tension. However, these force sensing modules are relatively large, and interpreting measurements requires specialized image analysis and careful control experiments. Here, we report a compact molecular tension sensor that generates a bioluminescent signal in response to tension. This sensor (termed PILATeS) makes use of the split NanoLuc luciferase and consists of the H. sapiens titin I10 domain with the insertion of a 10-15 amino acid tag derived from the C-terminal β-strand of NanoLuc. Mechanical load across PILATeS mediates exposure of this tag to recruit the complementary split NanoLuc fragment, resulting in force-dependent bioluminescence. We demonstrate the ability of PILATeS to report biologically meaningful forces by visualizing forces at the interface between integrins and extracellular matrix substrates. We further use PILATeS as a genetically encoded sensor of tension experienced by the mechanosensing protein vinculin. We anticipate that PILATeS will provide an accessible means of visualizing molecular-scale forces in biological systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过粘附连接(AJs)的力传递对于多细胞组织至关重要,伤口愈合和组织再生。最近的研究揭示了DJ机械转导的分子机制。然而,当机械转导模块的必需蛋白质发生突变或缺失时,规范模型无法解释力的传递。这里,我们证明,在没有α-连环蛋白的情况下,β-连环蛋白可以在开放构象中直接和功能性地与黏珠蛋白相互作用,承受生理力。此外,我们发现,β-连环蛋白可以在α-连环蛋白的存在下通过占据小珠蛋白的头-尾相互作用位点来防止小珠蛋白的自动抑制,从而保持力传递能力。一起来看,我们的研究结果表明,在AJ中存在多步力传递过程,其中α-连环蛋白和β-连环蛋白可以交替地和协同地与黑斑蛋白相互作用。这可以解释维持组织机械稳态所需的分级反应,重要的是,揭示了一种涉及β-catenin和扩展的vinculin的受力机制,可以潜在地解释导致缺乏α-catenin的转移性细胞集体入侵的潜在过程。
    Force transmission through adherens junctions (AJs) is crucial for multicellular organization, wound healing and tissue regeneration. Recent studies shed light on the molecular mechanisms of mechanotransduction at the AJs. However, the canonical model fails to explain force transmission when essential proteins of the mechanotransduction module are mutated or missing. Here, we demonstrate that, in absence of α-catenin, β-catenin can directly and functionally interact with vinculin in its open conformation, bearing physiological forces. Furthermore, we found that β-catenin can prevent vinculin autoinhibition in the presence of α-catenin by occupying vinculin´s head-tail interaction site, thus preserving force transmission capability. Taken together, our findings suggest a multi-step force transmission process at AJs, where α-catenin and β-catenin can alternatively and cooperatively interact with vinculin. This can explain the graded responses needed to maintain tissue mechanical homeostasis and, importantly, unveils a force-bearing mechanism involving β-catenin and extended vinculin that can potentially explain the underlying process enabling collective invasion of metastatic cells lacking α-catenin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于DNA的张力传感器创新了机械敏感受体传递的分子力的成像和校准,如整合素紧张。然而,这些传感器主要作为二进制记者,仅指示分子力是否超过一个预定义阈值。这里,我们已经开发了串联张力传感器(TTS),它包括两个连续的力传感单元,每个都有独特的力检测阈值和不同的荧光光谱,从而能够量化分子力与双参考水平。有了TTS,我们发现,在大约10pN(皮牛顿)时不需要传递整合素张力,但对于将整合素张力升高到粘着斑(FA)中超过20pN至关重要。在FA形成的早期阶段出现了这种高度紧张。TTS还成功检测到整合素张力的变化,以响应破坏的肌动蛋白形成,抑制肌球蛋白活性,和调整基底弹性。我们还应用TTS来检查血小板中的整合素张力,并揭示了两种力态,细胞中心区域的整合素张力超过20pN,细胞边缘的整合素张力超过13-20pN。总的来说,TTS,特别是由发夹DNA(13pN开放力)和剪切DNA(20pN开放力)组成的构建体,作为量化活细胞内受体传递的分子力的有价值的工具。
    DNA-based tension sensors have innovated the imaging and calibration of mechanosensitive receptor-transmitted molecular forces, such as integrin tensions. However, these sensors mainly serve as binary reporters, only indicating if molecular forces exceed one predefined threshold. Here, we have developed tandem tension sensor (TTS), which comprises two consecutive force-sensing units, each with unique force detection thresholds and distinct fluorescence spectra, thereby enabling the quantification of molecular forces with dual reference levels. With TTS, we revealed that vinculin is not required for transmitting integrin tensions at approximately 10 pN (piconewtons) but is essential for elevating integrin tensions beyond 20 pN in focal adhesions (FAs). Such high tensions have emerged during the early stage of FA formation. TTS also successfully detected changes in integrin tensions in response to disrupted actin formation, inhibited myosin activity, and tuned substrate elasticity. We also applied TTS to examine integrin tensions in platelets and revealed two force regimes, with integrin tensions surpassing 20 pN at cell central regions and 13-20 pN integrin tensions at the cell edge. Overall, TTS, especially the construct consisting of a hairpin DNA (13 pN opening force) and a shearing DNA (20 pN opening force), stands as a valuable tool for the quantification of receptor-transmitted molecular forces within living cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    免疫细胞是高度动态的,并且能够在具有不同的生物化学和机械组成的环境中迁移。它们的迁移通常被定义为变形虫,假设它是整合素独立的。这里,我们显示激活的原代Th1T细胞需要限制蛋白和细胞外基质蛋白有效迁移。这种迁移是通过小而动态的粘着斑介导的,这些粘着斑由与典型间充质细胞粘着斑相关的相同蛋白组成。如整合素,塔林,和Vinculin.这些粘着斑,此外,定位到收缩牵引应力的部位,使T细胞能够通过狭窄的空间。最后,我们显示Th1T细胞优先跟随其他T细胞的轨迹,这表明这些粘连会改变细胞外基质,以提供额外的环境指导线索。这些结果不仅表明变形虫和间充质迁移模式之间的界限是模糊的,但整合素介导的粘着斑在T细胞运动中起关键作用。
    Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical compositions. Their migration has classically been defined as amoeboid under the assumption that it is integrin independent. Here, we show that activated primary Th1 T cells require both confinement and extracellular matrix proteins to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal cell focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cells preferentially follow tracks of other T cells, suggesting that these adhesions modify the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated focal adhesions play a key role in T cell motility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    局灶性粘连在质膜上活化的整联蛋白受体周围形成液体样组装体。它们如何实现其柔性特性还没有得到很好的理解。这里,我们使用重组粘着斑蛋白在体外重建核心结构机制。我们观察了一系列条件和相互作用伙伴的核心粘着斑蛋白talin和vinculin的液-液相分离。有趣的是,我们表明,结合到含有PI(4,5)P2的膜触发了这些蛋白质在膜表面的相分离,进而诱导簇中整合素的富集。我们提出了一种机制,通过该机制,二维生物分子冷凝物在细胞质中的可溶性蛋白质在膜上组装:脂质结合触发蛋白质激活,因此,这些膜结合蛋白的液-液相分离。这可以解释早期的局灶性粘连如何维持一个结构化和抗力的组织进入细胞质,同时仍然是高度动态的,能够快速组装和拆卸。
    Focal adhesions form liquid-like assemblies around activated integrin receptors at the plasma membrane. How they achieve their flexible properties is not well understood. Here, we use recombinant focal adhesion proteins to reconstitute the core structural machinery in vitro. We observe liquid-liquid phase separation of the core focal adhesion proteins talin and vinculin for a spectrum of conditions and interaction partners. Intriguingly, we show that binding to PI(4,5)P2-containing membranes triggers phase separation of these proteins on the membrane surface, which in turn induces the enrichment of integrin in the clusters. We suggest a mechanism by which 2-dimensional biomolecular condensates assemble on membranes from soluble proteins in the cytoplasm: lipid-binding triggers protein activation and thus, liquid-liquid phase separation of these membrane-bound proteins. This could explain how early focal adhesions maintain a structured and force-resistant organization into the cytoplasm, while still being highly dynamic and able to quickly assemble and disassemble.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解细胞力传递动力学在机械生物学中至关重要。我们开发了基于DNA的ForceChrono探针来测量力的大小,持续时间,和单分子水平的负载率在活细胞内。ForceChrono探针通过在动态细胞环境中进行直接测量来规避体外单分子力光谱学的局限性。我们的发现显示整合素的力加载速率为0.5-2pN/s,持续时间从新生粘连的数十秒到成熟粘连的约100s。探针的稳健和可逆设计允许在细胞经历形态转变时连续监测这些动态变化。此外,通过分析突变,删除,或药物干预会影响这些参数,我们可以推断特定蛋白质或结构域在细胞机械转导中的功能作用。ForceChrono探测器提供了对机械力动力学的详细见解,提高我们对细胞力学和机械传导的分子机制的理解。
    Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe\'s robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Vinculin是增强细胞粘附的细胞骨架接头。志贺氏菌IpaA侵袭效应子结合到黏珠蛋白以促进与头部结构域介导的寡聚化相关的黏珠蛋白超激活。我们的研究调查了预测与IpaAVBS3相互作用的vinculinD1D2亚结构域残基突变的影响。这些突变影响D1D2三聚体形成的速率,对单体消失有不同的影响,与IpaA诱导的封闭和开放D1D2构象的结构建模一致。值得注意的是,靶向封闭D1D2构象体的突变显著降低了志贺氏菌对宿主细胞的侵袭,这与靶向开放D1D2构象体的突变和后续阶段的黏珠蛋白头部结构域寡聚化相反.相比之下,所有突变都影响粘着斑(FAs)的形成,支持vinculin超激活参与这一过程。我们的发现表明,IpaA诱导的vinculin超激活主要增强了感染细胞中的基质粘附,而不是促进细菌入侵。始终如一,剪切应力研究指出了IpaA诱导的vinculin超激活在加速和增强细胞-基质粘附中的关键作用。
    Vinculin is a cytoskeletal linker strengthening cell adhesion. The Shigella IpaA invasion effector binds to vinculin to promote vinculin supra-activation associated with head-domain-mediated oligomerization. Our study investigates the impact of mutations of vinculin D1D2 subdomains\' residues predicted to interact with IpaA VBS3. These mutations affected the rate of D1D2 trimer formation with distinct effects on monomer disappearance, consistent with structural modeling of a closed and open D1D2 conformer induced by IpaA. Notably, mutations targeting the closed D1D2 conformer significantly reduced Shigella invasion of host cells as opposed to mutations targeting the open D1D2 conformer and later stages of vinculin head-domain oligomerization. In contrast, all mutations affected the formation of focal adhesions (FAs), supporting the involvement of vinculin supra-activation in this process. Our findings suggest that IpaA-induced vinculin supra-activation primarily reinforces matrix adhesion in infected cells, rather than promoting bacterial invasion. Consistently, shear stress studies pointed to a key role for IpaA-induced vinculin supra-activation in accelerating and strengthening cell-matrix adhesion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞-细胞机械转导调节组织发育和稳态。α-连环蛋白,粘附连接的核心部件,通过募集vinculin和转导影响细胞行为的信号,充当张力传感器和换能器。α-连环蛋白/黏珠蛋白复合物介导的机械转导调节多种途径,例如河马途径。然而,它们与细胞连接处基于α-catenin的张力传感器的关联仍未完全解决。这里,我们发现TRIP6/LATS1复合物与α-catenin/vinculin共定位在双细胞连接(BCJs)和三细胞连接(TCJs)。TRIP6/LATS1复合物在TCJ和BCJ中的定位需要ROCK1和α-catenin。用细胞松弛素B治疗,Y-27632和blebbistatin均损害了TRIP6/LATS1的BCJ和TCJ连接定位,表明TRIP6/LATS1的连接定位是机械敏感性的。α-连环蛋白/vinculin/TRIP6/LATS1复合物强烈定位在TCJ上,并在BCJ上表现出不连续的纽扣状图案。此外,我们开发并验证了基于α-catenin/vinculinBiFC的机械传感器,该传感器与TRIP6/LATS1在BCJs和TCJs上共定位。机械传感器在BCJ处表现出不连续的分布和运动信号。总的来说,我们的研究表明,TRIP6和LATS1是张力传感器的新型组合物,连同α-连环蛋白/黏珠蛋白的核心复合物,在BCJ和TCJ。
    Cell-cell mechanotransduction regulates tissue development and homeostasis. α-catenin, the core component of adherens junctions, functions as a tension sensor and transducer by recruiting vinculin and transducing signals that influence cell behaviors. α-catenin/vinculin complex-mediated mechanotransduction regulates multiple pathways, such as Hippo pathway. However, their associations with the α-catenin-based tension sensors at cell junctions are still not fully addressed. Here, we uncovered the TRIP6/LATS1 complex co-localizes with α-catenin/vinculin at both bicellular junctions (BCJs) and tricellular junctions (TCJs). The localization of TRIP6/LATS1 complex to both TCJs and BCJs requires ROCK1 and α-catenin. Treatment by cytochalasin B, Y-27632 and blebbistatin all impaired the BCJ and TCJ junctional localization of TRIP6/LATS1, indicating that the junctional localization of TRIP6/LATS1 is mechanosensitive. The α-catenin/vinculin/TRIP6/LATS1 complex strongly localized to TCJs and exhibited a discontinuous button-like pattern on BCJs. Additionally, we developed and validated an α-catenin/vinculin BiFC-based mechanosensor that co-localizes with TRIP6/LATS1 at BCJs and TCJs. The mechanosensor exhibited a discontinuous distribution and motile signals at BCJs. Overall, our study revealed that TRIP6 and LATS1 are novel compositions of the tension sensor, together with the core complex of α-catenin/vinculin, at both the BCJs and TCJs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磷脂酰胆碱(PC)是大多数真核细胞中的主要膜磷脂。CHKB中功能变体的双等位基因缺失,编码合成PC的第一步,是人类和小鼠的rostrocautal肌营养不良的原因。肌膜完整性的丧失是肌营养不良的标志;然而,在缺乏胆碱激酶功能的情况下,这种情况是如何发生的尚不清楚。我们确定在Chkb-/-小鼠中存在对受影响的肌肉特异性的α7β1整联蛋白复合物的失败。我们观察到在Chkb-/-后肢肌肉中,PI(4,5)P2结合整合素复合物蛋白的肌膜缔合/丰度降低,和α-肌动蛋白,肌动蛋白与肌膜的结合减少。在细胞中,胆碱激酶活性的药理学抑制导致荧光PI(4,5)P2报告分子从细胞表面膜的离散质膜簇内化到细胞质,这与通过CHKB的过表达挽救的质膜粘着斑上的黏珠蛋白定位减少相对应.
    Phosphatidylcholine (PC) is the major membrane phospholipid in most eukaryotic cells. Bi-allelic loss of function variants in CHKB, encoding the first step in the synthesis of PC, is the cause of a rostrocaudal muscular dystrophy in both humans and mice. Loss of sarcolemma integrity is a hallmark of muscular dystrophies; however, how this occurs in the absence of choline kinase function is not known. We determine that in Chkb -/- mice there is a failure of the α7β1 integrin complex that is specific to affected muscle. We observed that in Chkb -/- hindlimb muscles there is a decrease in sarcolemma association/abundance of the PI(4,5)P2 binding integrin complex proteins vinculin, and α-actinin, and a decrease in actin association with the sarcolemma. In cells, pharmacological inhibition of choline kinase activity results in internalization of a fluorescent PI(4,5)P2 reporter from discrete plasma membrane clusters at the cell surface membrane to cytosol, this corresponds with a decreased vinculin localization at plasma membrane focal adhesions that was rescued by overexpression of CHKB.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号