transcription termination

转录终止
  • 文章类型: Journal Article
    真核基因组由RNA聚合酶II(polII)在基因内和基因间区域广泛转录。包含聚合酶的POLII延伸复合物,DNA模板和新生的RNA转录物必须是极其渐进的,以便转录最长的基因,这些基因超过1兆碱基长,需要数小时才能遍历。需要专用的终止机制来破坏这些高度稳定的复合物。转录终止不仅发生在基因的3'末端,一旦全长转录物已经产生,而且在基因内和杂乱转录的基因间区域。在这些后面的位置终止被称为“过早”,因为它不是响应于标记基因3'末端的特定信号而触发的,就像一个polyA网站。过早终止的一个目的是将聚合酶从基因间区域去除,因为它们可能会干扰重叠基因的转录或复制叉的进展。最近已经认识到过早终止在基因内以令人惊讶的高速率发生,其中推测其服务于调节或质量控制功能。在这篇综述中,我总结了目前对过早终止的不同机制及其潜在功能的理解。
    Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3\' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed \"premature\" because it is not triggered in response to a specific signal that marks the 3\' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are \"not wanted\" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转录终止过程是细胞中基因表达过程的重要组成部分。它已经被广泛研究,但该机制的许多方面还没有得到很好的理解。来自高通量实验的实验性RNA-seq数据的广泛可用性提供了推断全基因组转录单位结束的独特机会。该数据可用于驱动细菌中转录终止的Rho依赖性和Rho非依赖性终止途径。我们的书章节概述了Rho非依赖性转录终止机制的当前知识以及目前用于推断终止位点的预测方法。此后,我们描述了使用簇发夹检测Rho非依赖性转录终止位点的方法。这些簇是一组发夹,彼此相距<15bp,并且一起能够执行终止过程。一组发夹被广泛用于转录终止的想法是新的,结果显示,至少有52%的病例属于这种类型,而在其余案件中,单个强发夹能够驱动转录终止。来自相应细菌的RNA-seq数据的读段已用于验证预测的位点。与这些RNA-seq衍生位点匹配的预测具有更高的置信度,我们发现了几乎98%的预测地点,包括备用终止位点,以匹配RNA-seq数据。我们详细讨论了预测发夹的特征,以便更好地了解细菌中不依赖Rho的转录终止机制。我们还解释了用户如何使用我们开发的工具进行转录终止子预测,并通过预先计算的INTERPIN数据库中转录终止位点的基因组水平可视化来设计他们的实验。
    The transcription termination process is an important part of the gene expression process in the cell. It has been studied extensively, but many aspects of the mechanism are not well understood. The widespread availability of experimental RNA-seq data from high-throughput experiments provides a unique opportunity to infer the end of the transcription units genome wide. This data is available for both Rho-dependent and Rho-independent termination pathways that drive transcription termination in bacteria. Our book chapter gives an overview of the current knowledge of Rho-independent transcription termination mechanisms and the prediction approaches currently deployed to infer the termination sites. Thereafter, we describe our method that uses cluster hairpins to detect Rho-independent transcription termination sites. These clusters are a group of hairpins that lies at <15 bp from each other and are together capable of enforcing the termination process. The idea of a group of hairpins being extensively used for transcription termination is new, and results show that at least 52% of the total cases are of this type, while in the remaining cases, a single strong hairpin is capable of driving transcription termination. The reads derived from the RNA-seq data for corresponding bacteria have been used to validate the predicted sites. The predictions that match these RNA-seq derived sites have higher confidence, and we find almost 98% of the predicted sites, including alternate termination sites, to match the RNA-seq data. We discuss the features of predicted hairpins in detail for a better understanding of the Rho-independent transcription termination mechanism in bacteria. We also explain how users can use the tools developed by us to do transcription terminator predictions and design their experiments through genome-level visualization of the transcription termination sites from the precomputed INTERPIN database.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    INTS11和CPSF73是用于整合子和前mRNA3'末端加工的金属依赖性核酸内切酶,分别。这里,我们表明,INTS11结合配偶体BRAT1/CG7044,对神经元适应性的重要因素,在细胞质中稳定INTS11,并且是细胞核中整合子功能所必需的。神经类器官中BRAT1的缺失导致转录组破坏和神经发生驱动转录因子的早熟表达。人INTS9-INTS11-BRAT1和果蝇dIntS11-CG7044复合物的结构表明,BRAT1/CG7044的保守C末端被捕获在INTS11的活性位点中,半胱氨酸残基直接与金属离子配位。受这些观察的启发,我们发现UBE3D是CPSF73的结合伴侣,UBE3D可能还使用保守的半胱氨酸残基直接协调活性位点金属离子。我们的研究揭示了INTS11和CPSF73的结合伴侣,其行为类似细胞质伴侣,对这些酶的核功能具有保守的影响。
    INTS11 and CPSF73 are metal-dependent endonucleases for Integrator and pre-mRNA 3\'-end processing, respectively. Here, we show that the INTS11 binding partner BRAT1/CG7044, a factor important for neuronal fitness, stabilizes INTS11 in the cytoplasm and is required for Integrator function in the nucleus. Loss of BRAT1 in neural organoids leads to transcriptomic disruption and precocious expression of neurogenesis-driving transcription factors. The structures of the human INTS9-INTS11-BRAT1 and Drosophila dIntS11-CG7044 complexes reveal that the conserved C terminus of BRAT1/CG7044 is captured in the active site of INTS11, with a cysteine residue directly coordinating the metal ions. Inspired by these observations, we find that UBE3D is a binding partner for CPSF73, and UBE3D likely also uses a conserved cysteine residue to directly coordinate the active site metal ions. Our studies have revealed binding partners for INTS11 and CPSF73 that behave like cytoplasmic chaperones with a conserved impact on the nuclear functions of these enzymes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA聚合酶II(RNAPII)对转录的调节是所有细胞过程的基础,并且在数千种疾病中受到干扰。在人类中,RNAPII转录~20000个蛋白质编码基因,并在数千个其他位点参与明显无效的非编码转录。尽管无处不在,这种转录通常在启动后不久就减弱,产生的产物立即被核外泌体降解。我们和其他人最近描述了一个新的综合体,\"Restrictor\",这似乎控制了这种非生产性的转录。由RNA结合蛋白支撑,ZC3H4,限制因子在全基因组范围内限制非生产性/普遍转录。这里,我们讨论了这些最近的发现,并推测了一些关于限位器功能和机制的许多未知因素。
    The regulation of transcription by RNA polymerase II (RNAPII) underpins all cellular processes and is perturbed in thousands of diseases. In humans, RNAPII transcribes ∼20000 protein-coding genes and engages in apparently futile non-coding transcription at thousands of other sites. Despite being so ubiquitous, this transcription is usually attenuated soon after initiation and the resulting products are immediately degraded by the nuclear exosome. We and others have recently described a new complex, \"Restrictor\", which appears to control such unproductive transcription. Underpinned by the RNA binding protein, ZC3H4, Restrictor curtails unproductive/pervasive transcription genome-wide. Here, we discuss these recent discoveries and speculate on some of the many unknowns regarding Restrictor function and mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA聚合酶II(RNAPII)转录在许多人类蛋白质编码基因中双向启动。有义转录通常占主导地位,并导致信使RNA的产生,而反义转录迅速终止。这种方向性的基础尚未完全理解。这里,我们表明有义转录启动比反义方向更有效,这建立了初始启动子方向性。转录开始后,整合子的核酸内切亚基的相反功能,INTS11和细胞周期蛋白依赖性激酶9(CDK9)维持方向性。具体来说,INTS11终止反义转录,而有义转录被CDK9活性保护免受INTS11依赖性衰减。引人注目的是,INTS11在CDK9抑制后减弱两个方向的转录,CDK9的工程化募集使转录脱敏至INTS11。因此,有义转录的优先启动以及CDK9和INTS11的相反活性解释了哺乳动物启动子的方向性。
    RNA polymerase II (RNAPII) transcription initiates bidirectionally at many human protein-coding genes. Sense transcription usually dominates and leads to messenger RNA production, whereas antisense transcription rapidly terminates. The basis for this directionality is not fully understood. Here, we show that sense transcriptional initiation is more efficient than in the antisense direction, which establishes initial promoter directionality. After transcription begins, the opposing functions of the endonucleolytic subunit of Integrator, INTS11, and cyclin-dependent kinase 9 (CDK9) maintain directionality. Specifically, INTS11 terminates antisense transcription, whereas sense transcription is protected from INTS11-dependent attenuation by CDK9 activity. Strikingly, INTS11 attenuates transcription in both directions upon CDK9 inhibition, and the engineered recruitment of CDK9 desensitises transcription to INTS11. Therefore, the preferential initiation of sense transcription and the opposing activities of CDK9 and INTS11 explain mammalian promoter directionality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    共转录调控之间的相互联系,染色质环境,和转录输出仍然知之甚少。这里,我们研究了RNA3'加工介导的拟南芥花斑C(FLC)的多梳沉默的潜在机制。我们显示了对数学促进因子1(APRF1)的要求,酵母Swd2和人WDR82的同源物,已知在转录终止期间调节RNA聚合酶II(RNAPolII)。APRF1与1型丝氨酸/苏氨酸蛋白磷酸酶4(TOPP4)(酵母Glc7/人PP1)和LUMINIDEPENDENS(LD)相互作用,后者显示Ref2/PNUTS中的结构特征,CPF3'末端加工机械的酵母和人磷酸酶模块的所有组件。已显示LD在体内与组蛋白H3K4去甲基酶开花位点D(FLD)共结合。这项工作显示了APRF1/LD介导的聚腺苷酸化/终止过程如何通过改变FLC的局部染色质环境来影响随后的转录轮次。
    The interconnections between co-transcriptional regulation, chromatin environment, and transcriptional output remain poorly understood. Here, we investigate the mechanism underlying RNA 3\' processing-mediated Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC). We show a requirement for ANTHESIS PROMOTING FACTOR 1 (APRF1), a homolog of yeast Swd2 and human WDR82, known to regulate RNA polymerase II (RNA Pol II) during transcription termination. APRF1 interacts with TYPE ONE SERINE/THREONINE PROTEIN PHOSPHATASE 4 (TOPP4) (yeast Glc7/human PP1) and LUMINIDEPENDENS (LD), the latter showing structural features found in Ref2/PNUTS, all components of the yeast and human phosphatase module of the CPF 3\' end-processing machinery. LD has been shown to co-associate in vivo with the histone H3 K4 demethylase FLOWERING LOCUS D (FLD). This work shows how the APRF1/LD-mediated polyadenylation/termination process influences subsequent rounds of transcription by changing the local chromatin environment at FLC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:转录终止微调基因表达并有助于确定RNA在真核细胞中的功能。乙型肝炎病毒(HBV)的转录终止受到所有病毒转录本共有的经典聚腺苷酸化信号(cPAS)的识别。目前尚不清楚这种cPAS的使用及其对病毒基因表达和复制的影响。
    结果:要解开HBV转录本终止的调节,我们在体外感染的肝细胞和慢性感染的患者中实施了3'RACE-PCR分析与单分子测序相结合。先前未鉴定的转录连读的检测表明cPAS在体外和体内HBV复制期间未被系统地识别。基因表达下调实验证明了RNA解旋酶DDX5和DDX17在促进病毒转录连读中的作用,那是,反过来,与HBVRNA失稳和HBx蛋白表达降低相关。RNA和染色质免疫沉淀,连同cPAS序列的突变,表明DDX5和DDX17在将cPAS识别与转录连读功能连接中的直接作用,HBVRNA稳定性和复制。
    结论:我们的发现将DDX5和DDX17确定为HBV转录保真度的关键决定因素和HBV复制的宿主限制因子。
    乙型肝炎病毒(HBV)共价闭合环状(ccc)DNA降解或功能失活仍然是实现HBV治愈的圣杯。转录保真度是基因表达调控的基石。这里,我们证明了两个解旋酶,DDX5和DDX17,抑制HBV多腺苷酸化信号的识别和转录终止,从而降低HBVRNA的稳定性,并作为有效的cccDNA转录和病毒复制的限制因子。DDX5和DDX17在HBV慢性感染患者中下调的观察表明解旋酶在体内HBV持久性中的作用。这些结果为旨在确定中和cccDNA转录的新靶标的研究人员开辟了新的视角。
    OBJECTIVE: Transcription termination fine-tunes gene expression and contributes to the specification of RNA function in eukaryotic cells. Transcription termination of HBV is subject to the recognition of the canonical polyadenylation signal (cPAS) common to all viral transcripts. However, the regulation of this cPAS and its impact on viral gene expression and replication is currently unknown.
    METHODS: To unravel the regulation of HBV transcript termination, we implemented a 3\' RACE (rapid amplification of cDNA ends)-PCR assay coupled to single molecule sequencing both in in vitro-infected hepatocytes and in chronically infected patients.
    RESULTS: The detection of a previously unidentified transcriptional readthrough indicated that the cPAS was not systematically recognized during HBV replication in vitro and in vivo. Gene expression downregulation experiments demonstrated a role for the RNA helicases DDX5 and DDX17 in promoting viral transcriptional readthrough, which was, in turn, associated with HBV RNA destabilization and decreased HBx protein expression. RNA and chromatin immunoprecipitation, together with mutation of the cPAS sequence, suggested a direct role of DDX5 and DDX17 in functionally linking cPAS recognition to transcriptional readthrough, HBV RNA stability and replication.
    CONCLUSIONS: Our findings identify DDX5 and DDX17 as crucial determinants of HBV transcriptional fidelity and as host restriction factors for HBV replication.
    UNASSIGNED: HBV covalently closed circular (ccc)DNA degradation or functional inactivation remains the holy grail for the achievement of HBV cure. Transcriptional fidelity is a cornerstone in the regulation of gene expression. Here, we demonstrate that two helicases, DDX5 and DDX17, inhibit recognition of the HBV polyadenylation signal and thereby transcriptional termination, thus decreasing HBV RNA stability and acting as restriction factors for efficient cccDNA transcription and viral replication. The observation that DDX5 and DDX17 are downregulated in patients chronically infected with HBV suggests a role for these helicases in HBV persistence in vivo. These results open new perspectives for researchers aiming at identifying new targets to neutralise cccDNA transcription.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:剪接因子对于RNA剪接的调节至关重要,但也有一些与转录调控有关.它们参与转录过程的潜在分子机制仍然知之甚少。
    结果:这里,我们描述了剪接因子RBM22在协调人细胞中RNA聚合酶II(RNAPII)转录的多个步骤中的直接作用。RBM22蛋白广泛占据细胞核中RNAPII转录的基因座。RBM22的丢失促进RNAPII暂停释放,降低伸长速度,并激发全基因组的转录阅读,再加上产生包含来自基因下游的序列的转录本。RBM22优先结合过度磷酸化,转录参与RNAPII并通过调节7SK-P-TEFb复合物的稳态以及染色质水平上RNAPII与SPT5之间的关联来协调其动力学。
    结论:我们的结果揭示了RBM22在协调RNAPII转录程序中的多方面作用,并提供了在RNAPII延伸动力学和终止控制中涉及剪接因子的证据。
    Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood.
    Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level.
    Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    N6-甲基腺苷(m6A)是一种关键的RNA修饰,可调节人类细胞中的多种生物过程。但它的共转录沉积和功能仍然知之甚少。这里,我们鉴定了RNA解旋酶DDX21在指导新生RNA上的m6A修饰以进行共转录调控中具有先前未被认可的作用。DDX21与METTL3相互作用,通过其对R环的识别来共同募集染色质,其可以作为与模板DNA链杂交的新生转录物共同转录形成。此外,募集后,METTL3介导的m6A沉积到新生RNA上需要DDX21的解旋酶活性。在转录终止区,这种作用关系促进XRN2介导的RNAPII转录终止。破坏这些步骤中的任何一个,包括DDX21、METTL3或它们的酶活性的损失,导致缺陷终止,可诱导DNA损伤。因此,我们建议R-loop-DDX21-METTL3nexus锻造m6A的共转录修饰的缺失环节,协调转录终止和基因组稳定性。
    N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21\'s helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非洲猪瘟病毒(ASFV)是一种核质大DNA病毒(NCLDV),编码其自身的宿主样RNA聚合酶(RNAP)和产生成熟mRNA所需的因子。通过ASFVRNAP形成准确的mRNA3'末端取决于转录终止,可能是由序列基序和转录因子的组合实现的,虽然人们对这些知之甚少。任何RNAP的终止很少是100%有效的,终止子处的转录“readthrough”可以产生长的mRNAs,这可能会干扰下游基因的表达。ASFV转录组分析揭示了异质mRNA3'末端的景观,可能是真正终止位点和mRNA降解和加工的结果的组合。虽然短读测序(SRS)如3'RNA-seq表明mRNA3'末端在特定位点的积累,它不能告知哪些启动子和转录起始位点(TSS)指导它们的合成,即,关于核苷酸分辨率下完整和未加工的mRNA的信息。
    这里,我们报告了使用长读数测序(LRS)对全长ASFV转录本进行的严格分析.我们系统地比较了在早期和晚期感染期间从SRS3'RNA-seq预测的转录终止位点与LRS绘制的3'末端。
    使用体外转录测定,我们显示重组ASFVRNAP在非模板链的polyT延伸处终止转录,类似于古细菌RNAP或真核RNAPIII,没有二级RNA结构或预测的病毒终止因子的帮助。我们的结果巩固了这种富含T的基序(RNA中富含U)作为ASFV中的通用转录终止信号。许多基因使用相同的终止子,而基因也可以使用一系列终止子来产生长度变化很大的转录同种型。后一种现象的一个关键因素是我们观察到的高度丰富的终止子读通,与早期感染相比,晚期感染更为普遍。
    这表明在晚期基因启动子控制下的ASFVmRNAs利用与早期启动子不同的终止机制和因子,和/或细胞因子在感染晚期对病毒转录组景观的影响不同。
    African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that encodes its own host-like RNA polymerase (RNAP) and factors required to produce mature mRNA. The formation of accurate mRNA 3\' ends by ASFV RNAP depends on transcription termination, likely enabled by a combination of sequence motifs and transcription factors, although these are poorly understood. The termination of any RNAP is rarely 100% efficient, and the transcriptional \"readthrough\" at terminators can generate long mRNAs which may interfere with the expression of downstream genes. ASFV transcriptome analyses reveal a landscape of heterogeneous mRNA 3\' termini, likely a combination of bona fide termination sites and the result of mRNA degradation and processing. While short-read sequencing (SRS) like 3\' RNA-seq indicates an accumulation of mRNA 3\' ends at specific sites, it cannot inform about which promoters and transcription start sites (TSSs) directed their synthesis, i.e., information about the complete and unprocessed mRNAs at nucleotide resolution.
    Here, we report a rigorous analysis of full-length ASFV transcripts using long-read sequencing (LRS). We systematically compared transcription termination sites predicted from SRS 3\' RNA-seq with 3\' ends mapped by LRS during early and late infection.
    Using in-vitro transcription assays, we show that recombinant ASFV RNAP terminates transcription at polyT stretches in the non-template strand, similar to the archaeal RNAP or eukaryotic RNAPIII, unaided by secondary RNA structures or predicted viral termination factors. Our results cement this T-rich motif (U-rich in the RNA) as a universal transcription termination signal in ASFV. Many genes share the usage of the same terminators, while genes can also use a range of terminators to generate transcript isoforms varying enormously in length. A key factor in the latter phenomenon is the highly abundant terminator readthrough we observed, which is more prevalent during late compared with early infection.
    This indicates that ASFV mRNAs under the control of late gene promoters utilize different termination mechanisms and factors to early promoters and/or that cellular factors influence the viral transcriptome landscape differently during the late stages of infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号