target protein degradation

靶蛋白降解
  • 文章类型: Journal Article
    c-ros癌基因1(ROS1),一个致癌司机,已知过度激活时会诱导非小细胞肺癌(NSCLC),特别是通过融合蛋白的形成。传统的靶向治疗侧重于用ROS1抑制剂抑制ROS1活性以控制癌症进展。然而,一种涉及蛋白质降解物设计的新策略通过完全降解ROS1融合癌蛋白提供了一种更有效的方法,从而有效地阻断它们的激酶活性并增强抗肿瘤潜力。利用PROteasoly-Togeting嵌合体(PROTAC)技术,通过分子对接和合理设计,我们报告了第一个ROS1特定的PROTAC,SIAIS039.这种降解剂有效地靶向工程Ba/F3细胞和HCC78细胞中的多种ROS1融合癌蛋白(CD74-ROS1,SDC4-ROS1和SLC34A2-ROS1),证明了对ROS1融合驱动的癌细胞的抗肿瘤作用。它抑制细胞增殖,诱导细胞周期停滞,和细胞凋亡,并抑制克隆性。SIAIS039的抗肿瘤功效超过了两种已批准的药物,克唑替尼和恩替替尼,和顶级抑制剂的匹配,包括洛拉替尼和他列替尼。机理研究证实,039诱导的降解需要ROS1配体和E3泛素连接酶的参与,涉及蛋白酶体和泛素化。此外,039在小鼠异种移植模型中表现出优异的口服生物利用度,突出其临床应用潜力。总之,我们的研究通过靶向ROS1融合癌蛋白降解,为ROS1融合阳性NSCLC提供了一种有希望的新治疗策略,为进一步发展PROTAC奠定基础,并为ROS1融合阳性NSCLC患者提供希望。
    The c-ros oncogene 1 (ROS1), an oncogenic driver, is known to induce non-small cell lung cancer (NSCLC) when overactivated, particularly through the formation of fusion proteins. Traditional targeted therapies focus on inhibiting ROS1 activity with ROS 1 inhibitors to manage cancer progression. However, a new strategy involving the design of protein degraders offers a more potent approach by completely degrading ROS1 fusion oncoproteins, thereby effectively blocking their kinase activity and enhancing anti-tumour potential. Utilizing PROteolysis-TArgeting Chimera (PROTAC) technology and informed by molecular docking and rational design, we report the first ROS1-specific PROTAC, SIAIS039. This degrader effectively targets multiple ROS1 fusion oncoproteins (CD74-ROS1, SDC4-ROS1 and SLC34A2-ROS1) in engineered Ba/F3 cells and HCC78 cells, demonstrating anti-tumour effects against ROS1 fusion-driven cancer cells. It suppresses cell proliferation, induces cell cycle arrest, and apoptosis, and inhibits clonogenicity. The anti-tumour efficacy of SIAIS039 surpasses two approved drugs, crizotinib and entrectinib, and matches that of the top inhibitors, including lorlatinib and taletrectinib. Mechanistic studies confirm that the degradation induced by 039 requires the participation of ROS1 ligands and E3 ubiquitin ligases, and involves the proteasome and ubiquitination. In addition, 039 exhibited excellent oral bioavailability in a mouse xenograft model, highlighting its potential for clinical application. In conclusion, our study presents a promising and novel therapeutic strategy for ROS1 fusion-positive NSCLC by targeting ROS1 fusion oncoproteins for degradation, laying the foundation for the development of further PROTAC and offering hope for patients with ROS1 fusion-positive NSCLC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    赖氨酸脱甲基酶5(KDM5)蛋白参与各种神经系统疾病,包括老年痴呆症,和KDM5抑制有望成为这些疾病的治疗策略。然而,常规KDM5抑制剂的药理作用不足,因为它们仅针对KDM5的催化功能。为了确定具有更有效药理活性的化合物,我们专注于蛋白水解靶向嵌合体(PROTACs),降解靶蛋白,从而抑制它们的全部功能。我们基于先前鉴定的KDM5抑制剂设计并合成了新型KDM5PROTAC候选物。细胞分析的结果表明,两种化合物,20b和23b,在神经母细胞瘤神经2a细胞中通过降解KDM5A表现出显着的神经突生长促进活性。这些结果表明,KDM5PROTACs是用于治疗神经障碍的有希望的候选药物。
    Lysine demethylase 5 (KDM5) proteins are involved in various neurological disorders, including Alzheimer\'s disease, and KDM5 inhibition is expected to be a therapeutic strategy for these diseases. However, the pharmacological effects of conventional KDM5 inhibitors are insufficient, as they only target the catalytic functionality of KDM5. To identify compounds that exhibit more potent pharmacological activity, we focused on proteolysis targeting chimeras (PROTACs), which degrade target proteins and thus inhibit their entire functionality. We designed and synthesized novel KDM5 PROTAC candidates based on previously identified KDM5 inhibitors. The results of cellular assays revealed that two compounds, 20b and 23b, exhibited significant neurite outgrowth-promoting activity through the degradation of KDM5A in neuroblastoma neuro 2a cells. These results suggest that KDM5 PROTACs are promising drug candidates for the treatment of neurological disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本文探讨了调节蛋白质稳定性以实现靶蛋白降解的各种方法,这是研究生物过程和药物设计的一个重要方面。自利用N端规则引入热诱导的Degron细胞以来,已经过去了30年,以及使用泛素-蛋白酶体系统控制蛋白质稳定性的方法已经从学术界转移到了工业界。这篇综述涵盖了蛋白质稳定性控制方法,从早期到最近的进步,并讨论了该领域技术的发展。这篇综述还通过追踪从蛋白质稳定性控制方法开始到现在的发展,解决了蛋白质稳定性控制技术的挑战和未来方向。
    This review explores various methods for modulating protein stability to achieve target protein degradation, which is a crucial aspect in the study of biological processes and drug design. Thirty years have passed since the introduction of heat-inducible degron cells utilizing the N-end rule, and methods for controlling protein stability using the ubiquitin-proteasome system have moved from academia to industry. This review covers protein stability control methods, from the early days to recent advancements, and discusses the evolution of techniques in this field. This review also addresses the challenges and future directions of protein stability control techniques by tracing their development from the inception of protein stability control methods to the present day.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    含有Src同源性2结构域的磷酸酶2(SHP2)由于其在肿瘤和免疫细胞中的多方面作用而成为癌症治疗的有吸引力的靶标。在这里,我们设计并合成了一系列新型的蛋白水解靶向嵌合体(PROTACs),使用SHP2变构抑制剂作为弹头,目的是在细胞内和体内实现SHP2降解。在这些分子中,化合物P9以浓度和时间依赖性方式诱导SHP2的有效降解(DC50=35.2±1.5nM)。机制研究表明,P9介导的SHP2降解需要E3连接酶的募集,并且是泛素化和蛋白酶体依赖性的。P9显示在许多癌细胞系中的抗肿瘤活性优于其亲本变构抑制剂。重要的是,在异种移植小鼠模型中,P9的施用导致几乎完全的肿瘤消退,作为肿瘤中SHP2强耗竭和磷酸化ERK1/2抑制的结果。因此,P9代表具有优异体内功效的第一SHP2PROTAC分子。预计P9不仅可以用作询问SHP2生物学的新化学工具,而且可以用作开发靶向SHP2的新疗法的起点。
    Src homology 2 domain-containing phosphatase 2 (SHP2) is an attractive target for cancer therapy due to its multifaceted roles in both tumor and immune cells. Herein, we designed and synthesized a novel series of proteolysis targeting chimeras (PROTACs) using a SHP2 allosteric inhibitor as warhead, with the goal of achieving SHP2 degradation both inside the cell and in vivo. Among these molecules, compound P9 induces efficient degradation of SHP2 (DC50 = 35.2 ± 1.5 nM) in a concentration- and time-dependent manner. Mechanistic investigation illustrates that the P9-mediated SHP2 degradation requires the recruitment of the E3 ligase and is ubiquitination- and proteasome-dependent. P9 shows improved anti-tumor activity in a number of cancer cell lines over its parent allosteric inhibitor. Importantly, administration of P9 leads to a nearly complete tumor regression in a xenograft mouse model, as a result of robust SHP2 depletion and suppression of phospho-ERK1/2 in the tumor. Hence, P9 represents the first SHP2 PROTAC molecule with excellent in vivo efficacy. It is anticipated that P9 could serve not only as a new chemical tool to interrogate SHP2 biology but also as a starting point for the development of novel therapeutics targeting SHP2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    像KRAS这样的“不可用”目标在药物开发中尤其具有挑战性。我们设计了一种新颖的化学击倒策略,CANDDY(具有亲和力的化学击倒Nd降解动力学)技术,其使用与从蛋白酶体抑制剂修饰的降解标签(CANDDY标签)缀合的小分子(CANDDY分子)促进蛋白质降解。我们证明了CANDDY标签允许直接蛋白酶体靶标降解而不依赖于泛素化。我们合成了一种KRAS降解CANDDY分子,TUS-007,其在KRAS突变体(G12D和G12V)和野生型KRAS中诱导降解。我们证实了TUS-007在腹膜内给药的人结肠细胞皮下异种移植模型(KRASG12V)和口服给药的人胰腺细胞原位异种移植模型(KRASG12D)中的肿瘤抑制作用。因此,CANDDY技术有可能在治疗上靶向以前不可用的蛋白质,提供了一种更简单、更实用的药物靶向方法,并避免了E3酶与靶标匹配的困难。
    \"Undruggable\" targets such as KRAS are particularly challenging in the development of drugs. We devised a novel chemical knockdown strategy, CANDDY (Chemical knockdown with Affinity aNd Degradation DYnamics) technology, which promotes protein degradation using small molecules (CANDDY molecules) that are conjugated to a degradation tag (CANDDY tag) modified from proteasome inhibitors. We demonstrated that CANDDY tags allowed for direct proteasomal target degradation independent of ubiquitination. We synthesized a KRAS-degrading CANDDY molecule, TUS-007, which induced degradation in KRAS mutants (G12D and G12V) and wild-type KRAS. We confirmed the tumor suppression effect of TUS-007 in subcutaneous xenograft models of human colon cells (KRAS G12V) with intraperitoneal administrations and in orthotopic xenograft models of human pancreatic cells (KRAS G12D) with oral administrations. Thus, CANDDY technology has the potential to therapeutically target previously undruggable proteins, providing a simpler and more practical drug targeting approach and avoiding the difficulties in matchmaking between the E3 enzyme and the target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PROTACs(蛋白水解靶向嵌合体)已成为一类开创性的化学工具,可通过利用泛素-蛋白酶体系统(UPS)促进靶蛋白的降解。然而,在实现细胞选择性蛋白质降解和体内应用方面,PROTACs在化学生物学研究和治疗中的有效利用面临着重大挑战。这篇综述文章旨在阐明Pro-PROTACs开发的最新进展,其表现出响应于外部刺激或疾病相关的内源性生化信号的受控蛋白质降解能力。本文探讨了用于调节PROTACs与E3泛素连接酶或靶蛋白之间相互作用的特定化学策略。这些策略能够对Pro-PROTACs的蛋白质降解潜力进行空间和时间控制。此外,这篇综述总结了最近关于使用可生物降解的纳米颗粒进行体内应用和靶向蛋白质降解的PROTACs递送的研究。这样的递送系统对于在体内实现有效和选择性的蛋白质降解具有巨大的前景。最后,本文对多功能PROTACs的未来设计及其细胞内传递机制提供了一个观点,特别关注实现细胞选择性蛋白质降解。
    PROTACs (Proteolysis-Targeting Chimeras) have emerged as a groundbreaking class of chemical tools that facilitate the degradation of target proteins by leveraging the ubiquitin-proteasome system (UPS). However, the effective utilization of PROTACs in chemical biology studies and therapeutics encounters significant challenges when it comes to achieving cell-selective protein degradation and in vivo applications. This review article aims to shed light on recent advancements in the development of Pro-PROTACs, which exhibit controlled protein degradation capabilities in response to external stimuli or disease-related endogenous biochemical signals. The article delves into the specific chemical strategies employed to regulate the interaction between PROTACs and E3 ubiquitin ligases or target proteins. These strategies enable spatial and temporal control over the protein degradation potential of Pro-PROTACs. Furthermore, the review summarizes recent investigations regarding the delivery of PROTACs using biodegradable nanoparticles for in vivo applications and targeted protein degradation. Such delivery systems hold great promise for enabling efficient and selective protein degradation in vivo. Lastly, the article provides a perspective on the future design of multifunctional PROTACs and their intracellular delivery mechanisms, with a particular focus on achieving cell-selective protein degradation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    靶向蛋白质降解是用于新药设计和治疗的新兴且快速发展的技术。随着一类有前途的药物分子的出现,异双功能蛋白水解靶向嵌合体(PROTACs),TPD已成为使用传统小分子抑制剂完全解决致病蛋白的强大工具。然而,传统的PROTACs逐渐暴露了口服生物利用度和药代动力学(PK)和吸收差的潜在缺点,分布,新陈代谢,排泄,和毒性(ADMET)特性,因为它们比常规小分子抑制剂具有更大的分子量和更复杂的结构。因此,PROTAC概念提出20年后,越来越多的科学家致力于开发新的TPD技术来克服其缺陷。已经基于“PROTAC”探索了几种新技术和手段,以靶向“不可药用的蛋白质”。这里,我们旨在全面总结和深入分析基于PROTAC靶向降解“不可药用”靶标的靶向蛋白降解的研究进展。为了阐明基于PROTACs的新兴和高效策略在治疗各种疾病,特别是在克服癌症耐药性方面的重要性,我们将关注分子结构,作用机制,设计理念,这些新兴方法的发展优势和挑战(例如,适体-PROTAC缀合物,抗体-蛋白质和叶酸-蛋白质)。
    Targeted Protein Degradation is an emerging and rapidly developing technique for designing and treating new drugs. With the emergence of a promising class of pharmaceutical molecules, Heterobifunctional Proteolysis-targeting chimeras (PROTACs), TPD has become a powerful tool to completely tackle pathogenic proteins with traditional small molecule inhibitors. However, the conventional PROTACs have gradually exposed potential disadvantages of poor oral bioavailability and pharmacokinetic (PK) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics due to their larger molecular weight and more complex structure than the conventional small-molecule inhibitors. Therefore, 20 years after the concept of PROTAC was proposed, more and more scientists are committed to developing new TPD technology to overcome its defects. And several new technologies and means have been explored based on \"PROTAC\" to target \"undruggable proteins\". Here, we aim to comprehensively summarize and profoundly analyze the research progress of targeted protein degradation based on PROTAC targeting the degradation of \"undruggable\" targets. In order to clarify the significance of emerging and highly effective strategies based PROTACs in the treatment of various diseases especially in overcoming drug resistance in cancer, we will focus on the molecular structure, action mechanism, design concepts, development advantages and challenges of these emerging methods(e.g., aptamer-PROTAC conjugates, antibody-PROTACs and folate-PROTACs).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    靶向蛋白质降解(TPD)是解剖蛋白质功能和治疗的有用方法。常规使用的RNA干扰或基因敲除等技术依赖于蛋白质周转。然而,RNA干扰需要很长时间才能耗尽靶蛋白,并且不适合长寿命蛋白,虽然基因敲除是不可逆转的,需要很长时间才能实现,并且不适合必需基因。TPD有可能克服RNA干扰和基因编辑方法的局限性。我们已经建立了亲和定向PROtein导弹(AdPROM)系统,它利用目标蛋白的纳米抗体或结合剂将E3泛素连接酶活性重定向到目标蛋白,以通过泛素蛋白酶体系统诱导TPD。在这里,我们提供了使用AdPROM系统通过抗GFP纳米抗体靶向蛋白水解内源性GFP标记的K-RAS的逐步方案。可以通过用识别POI的纳米抗体替换抗GFP纳米抗体或通过CRISPR/Cas9基因组编辑用GFP内源性标记POI来修改该方案以靶向广泛的不同目的蛋白质(POI)。
    Targeted protein degradation (TPD) is a useful approach in dissecting protein function and therapeutics. Technologies such as RNA interference or gene knockout that are routinely used rely on protein turnover. However, RNA interference takes a long time to deplete target proteins and is not suitable for long-lived proteins, while a genetic knockout is irreversible, takes a long time to achieve and is not suitable for essential genes. TPD has the potential to overcome the limitations of RNA interference and gene editing approaches. We have established the Affinity directed PROtein Missile (AdPROM) system, which harnesses nanobodies or binders of target proteins to redirect E3 ubiquitin ligase activity to the target protein to induce TPD through the ubiquitin proteasome system. Here we provide a step-by-step protocol for using the AdPROM system for targeted proteolysis of endogenously GFP-tagged K-RAS through an anti-GFP nanobody. This protocol can be amended to target a wide range of different proteins of interest (POIs) either by replacing the anti-GFP nanobody with a nanobody recognising the POI or by endogenously tagging the POI with GFP through CRISPR/Cas9 genome editing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    以小分子化学药物和生物制剂为代表的传统药物的开发和应用,尤其是抑制剂,已成为药物开发的主流。近年来,靶向蛋白降解(TPD)技术已成为利用细胞自我破坏机制去除特定疾病相关蛋白的最有前途的方法之一。基于泛素-蛋白酶体系统(UPS)和自噬-溶酶体途径(ALP),正在出现许多不同的TPD策略。包括但不限于蛋白水解靶向嵌合体(PROTAC),分子胶(MG),溶酶体靶向嵌合体(LYTAC),伴侣介导的自噬(CMA)靶向嵌合体,自噬靶向嵌合体(AUTAC),自噬体系链化合物(ATTEC),和自噬靶向嵌合体(AUTOTAC)。靶向降解技术的出现可以改变人类细胞中的大多数蛋白质靶标,从不可药用到可药用,大大拓展了代谢综合征等难治性疾病的治疗前景。这里,我们总结了主要TPD技术的最新进展,特别是在代谢综合征中,并期待为药物发现提供新的见解。
    The development and application of traditional drugs represented by small molecule chemical drugs and biological agents, especially inhibitors, have become the mainstream drug development. In recent years, targeted protein degradation (TPD) technology has become one of the most promising methods to remove specific disease-related proteins using cell self-destruction mechanisms. Many different TPD strategies are emerging based on the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP), including but not limited to proteolysis-targeting chimeras (PROTAC), molecular glues (MG), lysosome targeting chimeras (LYTAC), chaperone-mediated autophagy (CMA)-targeting chimeras, autophagy-targeting chimera (AUTAC), autophagosome-tethering compound (ATTEC), and autophagy-targeting chimera (AUTOTAC). The advent of targeted degradation technology can change most protein targets in human cells from undruggable to druggable, greatly expanding the therapeutic prospect of refractory diseases such as metabolic syndrome. Here, we summarize the latest progress of major TPD technologies, especially in metabolic syndrome and look forward to providing new insights for drug discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    慢性粒细胞白血病(CML)是造血系统的恶性疾病,其致病蛋白BCR-ABL,严重危及患者生命.作为靶向药物的里程碑,伊马替尼在治疗CML方面取得了巨大成功。然而,由于BCR-ABL激酶的多个突变,临床上经常发生伊马替尼不可避免的耐药.随后,针对BCR-ABL的第二代酪氨酸激酶抑制剂(TKIs)被开发用于解决伊马替尼耐药的突变体,除了T315I.迄今为止,已经开发了针对T315I的第三代TKIs,用于提高选择性和安全性.值得注意的是,第一种变构抑制剂已经上市,可以有效克服ATP结合位点的突变.同时,一些先进的技术,例如基于不同E3配体的蛋白水解靶向嵌合体(PROTAC),高度期望通过选择性降解目标蛋白质来克服耐药性。在这次审查中,本文就目前针对BCR-ABL的抑制剂和降解剂治疗CML的研究进展作一综述。
    Chronic myeloid leukemia (CML) is a malignant disease of the hematopoietic system with crucial pathogenic protein named BCR-ABL, which endangers the life of patients severely. As a milestone of targeted drug, Imatinib has achieved great success in the treatment of CML. Nevertheless, inevitable drug resistance of Imatinib has occurred frequently in clinical due to the several mutations in the BCR-ABL kinase. Subsequently, the second-generation of tyrosine kinase inhibitors (TKIs) against BCR-ABL was developed to address the mutants of Imatinib resistance, except T315I. To date, the third-generation of TKIs targeting T315I has been developed for improving the selectivity and safety. Notably, the first allosteric inhibitor has been in market which could overcome the mutations in ATP binding site effectively. Meanwhile, some advanced technology, such as proteolysis-targeting chimeras (PROTAC) based on different E3 ligand, are highly expected to overcome the drug resistance by selectively degrading the targeted proteins. In this review, we summarized the current research progress of inhibitors and degraders targeting BCR-ABL for the treatment of CML.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号