synaptotagmin

突触蛋白
  • 文章类型: Journal Article
    光运动反应是评估小鼠皮层下视觉反应的流行方法。我们使用在棒或视锥中缺乏胞吐钙传感器突触1(Syt1)和7(Syt7)的基因修饰小鼠,研究了光运动电路中的光感受器输入。我们还测试了锥转导素的小鼠,GNAT2,已被淘汰。我们通过改变以12deg/s旋转的光栅的空间频率来研究中视条件下的空间频率灵敏度,并通过改变0.2c/deg光栅的亮度对比来研究对比度灵敏度。我们发现,从杆中消除Syt1会降低对低空间频率光栅(0.05c/deg)的响应,这与该途径的低分辨率一致。相反,消除视锥响应光(通过消除GNAT2)或透射光响应(通过选择性消除Syt1)的能力显示出对高空间频率光栅(3c/deg)的响应较弱。在整体敲除中从整个视电机途径中消除Syt7对视电机反应没有显着影响。通过同时消除棒中的Syt1和锥体中的GNAT2,我们分离了涉及通过间隙连接将棒响应传递到锥体的次级棒途径。我们发现,次级杆途径足以在中视条件下驱动强大的视电机反应。最后,从视杆和视锥中消除Syt1几乎完全消除了视电机反应,但是我们发现对大的反应较弱,明亮的旋转光栅,可能由固有光敏视网膜神经节细胞的输入驱动。
    Optomotor responses are a popular way to assess sub-cortical visual responses in mice. We studied photoreceptor inputs into optomotor circuits using genetically-modified mice lacking the exocytotic calcium sensors synaptotagmin 1 (Syt1) and 7 (Syt7) in rods or cones. We also tested mice that in which cone transducin, GNAT2, had been eliminated. We studied spatial frequency sensitivity under mesopic conditions by varying the spatial frequency of a grating rotating at 12 deg/s and contrast sensitivity by varying luminance contrast of 0.2c/deg gratings. We found that eliminating Syt1 from rods reduced responses to a low spatial frequency grating (0.05c/deg) consistent with low resolution in this pathway. Conversely, eliminating the ability of cones to respond to light (by eliminating GNAT2) or transmit light responses (by selectively eliminating Syt1) showed weaker responses to a high spatial frequency grating (3c/deg). Eliminating Syt7 from the entire optomotor pathway in a global knockout had no significant effect on optomotor responses. We isolated the secondary rod pathway involving transmission of rod responses to cones via gap junctions by simultaneously eliminating Syt1 from rods and GNAT2 from cones. We found that the secondary rod pathway is sufficient to drive robust optomotor responses under mesopic conditions. Finally, eliminating Syt1 from both rods and cones almost completely abolished optomotor responses, but we detected weak responses to large, bright rotating gratings that are likely driven by input from intrinsically photosensitive retinal ganglion cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经递质释放包括快速同步释放,随后是更持久的异步释放(AR)。虽然触发同步释放的突触前蛋白是众所周知的,AR的机制尚不清楚。AR由低浓度的细胞内Ca2+和Sr2+维持,这表明传感器对两种离子都有很高的亲和力。突触蛋白7(SYT7)部分介导AR,但在没有SYT7的情况下,大量AR仍然存在。密切相关的SYT3以高亲和力结合Ca2+和Sr2+,使其成为调解AR的有希望的候选人。这里,我们使用基因敲除小鼠研究SYT3和SYT7对小脑和海马突触的AR的贡献。当两种同工型都不存在时,AR显着降低,这改变了突触后动作电位的数量和时间。我们的结果证实了SYT3介导AR的长期预测,并表明SYT3和SYT7在三个中央突触中充当AR的主要机制。
    Neurotransmitter release consists of rapid synchronous release followed by longer-lasting asynchronous release (AR). Although the presynaptic proteins that trigger synchronous release are well understood, the mechanisms for AR remain unclear. AR is sustained by low concentrations of intracellular Ca2+ and Sr2+, suggesting the involvement of sensors with high affinities for both ions. Synaptotagmin 7 (SYT7) partly mediates AR, but substantial AR persists in the absence of SYT7. The closely related SYT3 binds Ca2+ and Sr2+ with high affinity, making it a promising candidate to mediate AR. Here, we use knockout mice to study the contribution of SYT3 and SYT7 to AR at cerebellar and hippocampal synapses. AR is dramatically reduced when both isoforms are absent, which alters the number and timing of postsynaptic action potentials. Our results confirm the long-standing prediction that SYT3 mediates AR and show that SYT3 and SYT7 act as dominant mechanisms for AR at three central synapses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胞吐后,将质膜链囊泡蛋白重新捕获到再循环突触囊泡(SV)中对于维持神经传递至关重要。已提出囊泡蛋白的表面聚类作为内吞的“预组装”机制,可确保SV货物的高保真回收。这里,我们使用单分子成像检查了海马神经元中突触小泡蛋白-1(Syt1)和突触小泡蛋白2A(SV2A)的纳米聚类.Syt1通过其C2B域与SV2A的相互作用形成表面纳米簇,其对该结构域中的突变(Syt1K326A/K328A)和SV2A敲低敏感。通过阻断SV2A与Syt1的同源相互作用(SV2AT84A),减少了SV2A与Syt1的共聚类。令人惊讶的是,SV2A-Syt1纳米聚集增强了关键内吞蛋白dynamin-1的质膜募集,导致Syt1内吞加速,改变了细胞内分选,并减少了Syt1向Rab5阳性胞吞区室的运输。因此,SV2A和Syt1与表面纳米团簇中的内吞机制分离,限制动态素的招募,并对Syt1进入回收SV进行负面监管。
    Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a \'pre-assembly\' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A\'s cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Ca2传感器突触蛋白-1与由syntaxin-1,SNAP25和突触蛋白形成的神经元SNARE复合物一起触发神经递质释放。此外,synaptotagmin-1会增加突触小泡的启动并损害自发的小泡释放。突触蛋白-1C2B域通过两个区域(I和II)通过初级界面与SNARE复合物结合,但是该界面如何介导突触蛋白-1的不同功能,以及Ca2触发释放的潜在机制尚不清楚。利用诱变和电生理实验,我们表明,区域II在功能和空间上是细分的:C2B结构域精氨酸与区域II一面的SNAP-25酸性残基的结合对于Ca2诱发的释放至关重要,但对于囊泡引发或自发释放的钳制却至关重要。而另一面的其他SNAP-25和syntaxin-1酸性残基介导自发释放的启动和钳制,而不是诱发释放。破坏I区的突变会损害突触结合蛋白-1的启动和钳位功能,惊人的,通过该区域增强结合的突变增加了囊泡引发和自发释放的夹紧,但强烈抑制诱发释放和囊泡融合性。这些结果支持了先前的发现,即初级界面在囊泡引发和自发释放的钳位中介导突触蛋白-1的功能,and,重要的是,表明Ca2+触发释放需要涉及区域I解离的主要界面的重排,而第二区仍有限制。结合论文中提出的建模和生物物理研究,我们的数据提出了一个模型,通过该模型,这种重排可以拉动SNARE复合物,从而促进突触小泡的快速融合.
    快速释放神经递质需要突触SNARE复合物和突触蛋白-1。已经提出了突触小泡制备用于融合和执行触发步骤的突触小泡的功能,该功能通过所谓的主要界面与SNARE复合物的相互作用来调节。在神经元中使用定点诱变和功能分析,我们现在表明,突触蛋白-1通过与该界面上的SNARE复合物的两个接触位点介导其释放准备功能。在Ca2+触发期间,synaptotagmin-1继续与一个位点的SNARE联系,但断开另一个位点的连接。我们建议此开关在SNARE复合体上产生拉力,进而触发释放。随附论文中描述的生化和建模研究支持了这一假设。
    The Ca2+ sensor synaptotagmin-1 triggers neurotransmitter release together with the neuronal SNARE complex formed by syntaxin-1, SNAP25 and synaptobrevin. Moreover, synaptotagmin-1 increases synaptic vesicle priming and impairs spontaneous vesicle release. The synaptotagmin-1 C2B domain binds to the SNARE complex through a primary interface via two regions (I and II), but how exactly this interface mediates distinct functions of synaptotagmin-1, and the mechanism underlying Ca2+-triggering of release is unknown. Using mutagenesis and electrophysiological experiments, we show that region II is functionally and spatially subdivided: binding of C2B domain arginines to SNAP-25 acidic residues at one face of region II is crucial for Ca2+-evoked release but not for vesicle priming or clamping of spontaneous release, whereas other SNAP-25 and syntaxin-1 acidic residues at the other face mediate priming and clamping of spontaneous release but not evoked release. Mutations that disrupt region I impair the priming and clamping functions of synaptotagmin-1 while, strikingly, mutations that enhance binding through this region increase vesicle priming and clamping of spontaneous release, but strongly inhibit evoked release and vesicle fusogenicity. These results support previous findings that the primary interface mediates the functions of synaptotagmin-1 in vesicle priming and clamping of spontaneous release, and, importantly, show that Ca2+-triggering of release requires a rearrangement of the primary interface involving dissociation of region I, while region II remains bound. Together with modeling and biophysical studies presented in the accompanying paper, our data suggest a model whereby this rearrangement pulls the SNARE complex to facilitate fast synaptic vesicle fusion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过与Synaptotagmin-1C2结构域的Ca2结合以及在突触小泡和质膜之间形成四螺旋束的SNARE复合物在微秒内触发神经递质的释放,但Ca2+传感与膜融合的耦合机制尚不清楚。释放需要将SNARE螺旋延伸到跨膜区之前的近膜接头中(接头拉链),并通过包含两个区域(I和II)的“主要界面”将Synaptotagmin-1C2B结构域与SNARE复合物结合。Synaptotagmin-1Ca2结合环被认为通过诱导膜弯曲来加速膜融合,扰乱脂质双层或帮助桥接膜,但是SNARE复合物结合使Ca2+结合环远离融合位点,阻碍这些假定的活动。分子动力学模拟现在表明,融合位点附近的Synaptotagmin-1C2结构域阻碍了SNARE的作用,为这一悖论提供解释,并反对以前的Sytnaptotagmin-1行动模型。NMR实验表明,C2B结构域精氨酸与SNARE酸性残基的结合在区域I破坏后仍然存在。这些结果和荧光共振能量转移测定,连同以前的数据,表明Ca2引起膜上C2B结构域的重新定向,并在I区而不是II区与SNARE解离。基于这些结果和分子建模,我们认为,当Ca2+导致C2B结构域重新定向时,Synaptotagmin-1充当拉动SNARE复合物的杠杆,促进接头拉链和快速膜融合。该假设得到了所附论文中描述的电生理数据的支持。
    神经传递剂的释放需要SNARE复合物,该复合物将突触小泡与质膜和Ca2传感器突触结合蛋白-1融合,被认为直接通过其Ca2结合环促进膜融合。然而,Synaptotagmin-1与SNARE复合物的结合使这些环远离融合位点。利用分子动力学模拟,我们表明,将Synaptotagmin-1置于融合位点会阻碍SNARE复合物的作用。光谱研究表明,与Synaptotagmin-1结合的Ca2可以改变其与SNARE复合物的相互作用,与分子建模一起,建议Synaptotagmin-1充当杠杆,拉SNARE复合物,从而促进它们在膜上的作用以诱导融合。所附论文中描述的功能研究支持这一假设。
    Neurotransmitter release is triggered in microseconds by Ca2+-binding to the Synaptotagmin-1 C2 domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca2+-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 C2B domain to SNARE complexes through a \'primary interface\' comprising two regions (I and II). The Synaptotagmin-1 Ca2+-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but SNARE complex binding orients the Ca2+-binding loops away from the fusion site, hindering these putative activities. Molecular dynamics simulations now suggest that Synaptotagmin-1 C2 domains near the site of fusion hinder SNARE action, providing an explanation for this paradox and arguing against previous models of Sytnaptotagmin-1 action. NMR experiments reveal that binding of C2B domain arginines to SNARE acidic residues at region II remains after disruption of region I. These results and fluorescence resonance energy transfer assays, together with previous data, suggest that Ca2+ causes reorientation of the C2B domain on the membrane and dissociation from the SNAREs at region I but not region II. Based on these results and molecular modeling, we propose that Synaptotagmin-1 acts as a lever that pulls the SNARE complex when Ca2+ causes reorientation of the C2B domain, facilitating linker zippering and fast membrane fusion. This hypothesis is supported by the electrophysiological data described in the accompanying paper.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管经过几十年的紧张研究,异步神经递质释放的分子基础仍然是神秘的。Synaptotagmin(syt)7和Doc2都被提出作为触发这种胞吐模式的Ca2传感器,但是相互矛盾的发现引发了争议。这里,我们证明,在兴奋性小鼠海马突触,Doc2α是异步释放的主要Ca2+传感器,而syt7通过突触小泡的活性依赖性对接来支持这一过程。在缺乏Doc2α的突触中,单个动作电位强烈降低后的异步释放,而删除syt7没有效果。然而,在没有syt7的情况下,对接的囊泡不能在毫秒时间尺度上得到补充。因此,在重复活动期间,同步和异步释放从第二个脉冲向前按压。相比之下,缺乏Doc2α的突触具有正常的活动依赖性对接,但在多次刺激后继续表现出减少的异步释放。此外,两个Ca2+传感器的破坏都是非加成的。这些发现导致了一个新的模型,即syt7驱动依赖于活动的对接,从而在持续传输期间为同步(syt1)和异步(Doc2和其他未识别的传感器)释放提供突触小泡。
    Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SNAP25是驱动突触小泡胞吐的三种神经元SNARE之一。我们研究了SNAP25中引起癫痫性脑病的三个突变:V48F,和D166Y在synaptotagmin-1(Syt1)结合界面中,I67N,这会破坏SNARE复合体的稳定性。在体外以及在小鼠海马神经元中表达时,所有三种突变均降低了Syt1依赖性囊泡与携带SNARE的脂质体和Ca2刺激的膜融合的对接。V48F和D166Y突变体(效力D166Y>V48F)导致易于释放池(RRP)大小减小,由于增加的自发(微型兴奋性突触后电流,mEPSC)释放并降低引发率。这些突变降低了融合的能量屏障,增加了释放概率,这是Syt1敲除(KO)神经元中未发现的功能获得特征;标准化的mEPSC释放率(效力D166Y>V48F)高于Syt1KO。这些突变(效力D166Y>V48F)增加了与伴侣SNARE的自发关联,导致不受调节的膜融合。相比之下,I67N突变体降低了mEPSC频率和诱发的EPSC振幅,这是由于融合能垒高度的增加,而RRP大小不受影响。这可以通过降低能量势垒的正电荷来部分补偿。总的来说,SNAP25中的致病性突变会导致启动和融合的能量景观发生复杂的变化。
    大脑中的神经元通过将称为神经递质的分子穿过连接在一起的突触来相互通信。控制神经递质释放的机制中的突变可导致儿童早期癫痫或发育迟缓,但究竟是如何知之甚少。神经递质的释放主要由三种蛋白质控制,它们连接在一起形成SNARE复合物,和另一种叫做突触蛋白-1的蛋白质。蛋白质的这种组装启动了包含从神经元释放的神经递质分子的囊泡。当钙离子与突触结合时,这会触发该易于释放的池中的囊泡,然后与细胞膜融合并将其内容物分泌到通讯神经元之间的小间隙中。在这种释放机制的所有组件中都发现了与癫痫和发育迟缓相关的突变。这里,卡德科娃,Murach,Østergaard等人。开始寻找这些突变中的三个,它们存在于SNARE复合物中称为SNAP25的蛋白质中,导致异常的神经递质释放。这些突变中的两个位于SNARE复合物和突触蛋白-1之间的界面中,而另一个位于构成SNARE复合物的蛋白质束中。小鼠的体外和离体实验表明,两种界面突变导致囊泡引发缺陷,同时绕过突触蛋白-1的控制,导致囊泡以不调节的方式自发地与细胞膜融合。因此,这些突变组合了功能丧失和功能获得特征。相比之下,束突变不会影响可释放池中的囊泡数量,但会减少自发和钙离子诱发的囊泡融合。这是由于突变使SNARE复合物不稳定,这减少了可用于将囊泡合并到膜上的能量。这些发现揭示了SNAP25突变如何对突触活动产生不同的影响,以及这些缺陷如何破坏神经递质的释放。该实验框架可用于研究其他突触突变如何导致癫痫等疾病。将这种方法应用于人类神经元和活的模型生物可能导致发现癫痫和延迟发育的新治疗靶标。
    SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.
    Neurons in the brain communicate with one another by passing molecules called neurotransmitters across the synapse connecting them together. Mutations in the machinery that controls neurotransmitter release can lead to epilepsy or developmental delays in early childhood, but how exactly is poorly understood. Neurotransmitter release is primarily controlled by three proteins that join together to form the SNARE complex, and another protein called synaptotagmin-1. This assembly of proteins primes vesicles containing neurotransmitter molecules to be released from the neuron. When calcium ions bind to synaptotagmin-1, this triggers vesicles in this readily releasable pool to then fuse with the cell membrane and secrete their contents into the small gap between the communicating neurons. Mutations associated with epilepsy and developmental delays have been found in all components of this release machinery. Here, Kádková, Murach, Østergaard et al. set out to find how three of these mutations, which are found in a protein in the SNARE complex called SNAP25, lead to aberrant neurotransmitter release. Two of these mutations are located in the interface between the SNARE complex and synaptotagmin-1, while the other is found within the bundle of proteins that make up the SNARE complex. In vitro and ex vivo experiments in mice revealed that the two interface mutations led to defects in vesicle priming, while at the same time bypassing the control by synaptotagmin-1, resulting in vesicles spontaneously fusing with the cell membrane in an unregulated manner. These mutations therefore combine loss-of-function and gain-of-function features. In contrast, the bundle mutation did not impact the number of vesicles in the releasable pool but reduced spontaneous and calcium ion evoked vesicle fusion. This was due to the mutation destabilizing the SNARE complex, which reduced the amount of energy available for merging vesicles to the membrane. These findings reveal how SNAP25 mutations can have different effects on synapse activity, and how these defects disrupt the release of neurotransmitters. This experimental framework could be used to study how other synaptic mutations lead to diseases such as epilepsy. Applying this approach to human neurons and live model organisms may lead to the discovery of new therapeutic targets for epilepsy and delayed development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多巴胺神经元响应显着的刺激,从强直的起搏器活动转换为高频爆发。这些爆发导致多巴胺释放的超线性增加,这种增加的程度高度依赖于点火频率。多巴胺释放的超线性和频率依赖性暗示了短期可塑性过程。突触前Ca2传感器突触结合蛋白7(SYT7)具有介导这种短期可塑性的合适特性,并且与调节从躯体树突区室释放多巴胺有关。在这里,我们在Syt7敲除小鼠中使用遗传编码的多巴胺传感器和全细胞电生理学来确定SYT7如何促进轴突和体树突状多巴胺释放。我们发现SYT7介导了从多巴胺末端释放的促进的隐藏成分,可以通过降低初始释放概率来掩盖,或者通过低频刺激预先抑制突触。SYT7的耗竭增加了短期抑郁,并在模拟体内放电的刺激期间减少了释放。黑质致密部(SNc)中D2介导的抑制性突触后电流的记录证实了SYT7在躯体树突释放中的类似作用。我们的结果表明,SYT7驱动短期促进多巴胺释放,这可以解释在体内观察到的多巴胺信号的频率依赖性意义陈述每个中脑多巴胺神经元释放到数千个下游细胞上,允许多巴胺神经元的活动对运动产生巨大影响,动机,和学习。多巴胺释放随射击速率非线性变化,这表明这些神经元可能采用了活动依赖性可塑性的经典机制。在这里,我们表明,在多个大脑区域的多巴胺释放位点采用了良好的可塑性特征机制,synaptotagmin-7,在高频活动期间显着促进多巴胺释放。这项工作概括了短期可塑性的机制,该机制在常规突触中已被很好地表征为神经调节剂的释放,并有助于解释多巴胺释放的活性依赖性。
    Dopamine neurons switch from tonic pacemaker activity to high-frequency bursts in response to salient stimuli. These bursts lead to superlinear increases in dopamine release, and the degree of this increase is highly dependent on firing frequency. The superlinearity and frequency dependence of dopamine release implicate short-term plasticity processes. The presynaptic Ca2+-sensor synaptotagmin-7 (SYT7) has suitable properties to mediate such short-term plasticity and has been implicated in regulating dopamine release from somatodendritic compartments. Here, we use a genetically encoded dopamine sensor and whole-cell electrophysiology in Syt7 KO mice to determine how SYT7 contributes to both axonal and somatodendritic dopamine release. We find that SYT7 mediates a hidden component of facilitation of release from dopamine terminals that can be unmasked by lowering initial release probability or by predepressing synapses with low-frequency stimulation. Depletion of SYT7 increased short-term depression and reduced release during stimulations that mimic in vivo firing. Recordings of D2-mediated inhibitory postsynaptic currents in the substantia nigra pars compacta (SNc) confirmed a similar role for SYT7 in somatodendritic release. Our results indicate that SYT7 drives short-term facilitation of dopamine release, which may explain the frequency dependence of dopamine signaling seen in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    Synaptotagmin-1(SYT1)在调节突触前过程中起着关键作用,包括神经递质释放。SYT1变体扰乱突触小泡胞吞和胞吐,导致一系列神经发育障碍,定义为贝克-戈登综合征。在这里,我们报告了一个新生儿面部畸形的病例,严重的低张力,喂养不良,胃食管反流,无法进食和呼吸,诊断为Baker-Gordon综合征.对患有Baker-Gordon综合征的新生儿进行了回顾性搜索。医学图表进行了审查,专注于临床表现,诊断过程,和治疗结果。进行全基因组高通量DNA测序以鉴定遗传变体。全外显子组测序鉴定出可能的致病性变异为SYT1C.551T>C(p。V184A)。Sanger测序结果表明,该变体是位于蛋白质C2A结构域的保守位点中的从头突变。由于严重的喂养和呼吸问题,患者在57天大时死亡。我们在诊断为婴儿Baker-Gordon综合征的最年轻患者中SYT1的C2A域中发现了一种新的致命变体,该患者迄今报告了最严重的张力减退,从而扩大了SYT1相关神经发育障碍的范围。
    Synaptotagmin-1 (SYT1) plays a pivotal role in regulating presynaptic processes, including neurotransmitter release. SYT1 variants perturb synaptic vesicle endocytosis and exocytosis, resulting in a series of neurodevelopmental disorders defined as Baker-Gordon syndrome. Herein, we report the case of a newborn with dysmorphic facial appearance, severe hypotonia, poor feeding, gastroesophageal reflux, and an inability to eat and breathe, diagnosed with Baker-Gordon syndrome. A retrospective search was performed on a newborn with Baker-Gordon syndrome. Medical charts were reviewed, with focus on the clinical presentation, diagnostic process, and treatment outcomes. Whole-genome high-throughput DNA sequencing was performed to identify genetic variants. Whole-exome sequencing identified the likely pathogenic variant as SYT1 C.551 T > C(p.V184A). Sanger sequencing results indicated that this variant was a de novo mutation in a conservative site located in the C2A domain of the protein. The patient died at 57 days old because of severe feeding and breathing problems. Our findings of a novel lethal variant in the C2A domain of SYT1 in the youngest patient diagnosed infantile Baker-Gordon syndrome who presented with the most severe hypotonia reported to date expands the spectrum of SYT1- associated neurodevelopmental disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    膜运输途径介导关键的小胶质细胞活动,如细胞迁移,细胞因子分泌,和吞噬作用。然而,潜在的分子机制仍然知之甚少。以前,我们发现突触蛋白11(Syt11),与帕金森病(PD)和精神分裂症相关的非Ca2+结合Syt,抑制原发性小胶质细胞的细胞因子释放和吞噬作用。在这里,我们使用诱导型小胶质细胞特异性Syt11条件敲除(cKO)小鼠品系报道了Syt11在小胶质细胞免疫反应中的体内功能。Syt11-cKO导致小胶质细胞的激活和IL-6,TNF-α的mRNA水平升高,IL-1β,在成年小鼠的静息状态和LPS诱导的急性炎症状态下,各个脑区的iNOS和iNOS。在通过将预先形成的α-突触核蛋白原纤维显微注射到纹状体中产生的PD小鼠模型中,在Syt11-cKO小鼠中发现小胶质细胞向注射部位迁移的数量减少,小胶质细胞对α-突触核蛋白原纤维的吞噬作用增强。了解Syt11功能的分子机制,我们确定了其直接结合蛋白vps10p-tail-interactor-1a(vti1a)和vti1b。Syt11的接头结构域与两种蛋白质和衍生自它的肽相互作用,在体外和细胞中竞争性地抑制Syt11与vti1a/vti1b的相互作用。重要的是,该肽的应用诱导更多的细胞因子分泌在野生型小胶质细胞LPS处理,Syt11敲低细胞中的表型复制缺陷。总之,我们认为Syt11在体内抑制小胶质细胞活化,并通过与vti1a和vti1b相互作用调节细胞因子分泌.
    Membrane trafficking pathways mediate key microglial activities such as cell migration, cytokine secretion, and phagocytosis. However, the underlying molecular mechanism remains poorly understood. Previously, we found that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt associated with Parkinson\'s disease (PD) and schizophrenia, inhibits cytokine release and phagocytosis in primary microglia. Here we reported the in vivo function of Syt11 in microglial immune responses using an inducible microglia-specific Syt11-conditional-knockout (cKO) mouse strain. Syt11-cKO resulted in activation of microglia and elevated mRNA levels of IL-6, TNF-α, IL-1β, and iNOS in various brain regions under both resting state and LPS-induced acute inflammation state in adult mice. In a PD mouse model generated by microinjection of preformed α-synuclein fibrils into the striatum, a reduced number of microglia migrated toward the injection sites and an enhanced phagocytosis of α-synuclein fibrils by microglia were found in Syt11-cKO mice. To understand the molecular mechanism of Syt11 function, we identified its direct binding proteins vps10p-tail-interactor-1a (vti1a) and vti1b. The linker domain of Syt11 interacted with both proteins and a peptide derived from it competitively inhibited the interaction of Syt11 with vti1a/vti1b in vitro and in cells. Importantly, application of this peptide induced more cytokine secretion in wild-type microglia upon LPS treatment, phenocopying defects in Syt11 knockdown cells. Altogether, we propose that Syt11 inhibits microglial activation in vivo and regulates cytokine secretion through interactions with vti1a and vti1b.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号