surface plasmons

表面等离子体激元
  • 文章类型: Journal Article
    由于其太赫兹调制带宽,超紧凑型电驱动光学天线(EDOA)的光发射引起了广泛关注。通常,EDOAs是固定的,一旦制造就不可调节,从而阻碍了研究结构几何形状对发光特性影响的尝试。这里,我们提出并证明了EDOA可以通过仔细操纵以导电模式操作的原子力显微镜的金涂层尖端与绝缘膜覆盖的光学天线接触来构建。在天线表面上隧道结的位置可以高精度和灵活性地控制。以HfO2薄膜覆盖的金纳米棒天线为例,我们发现,当隧道结位于纳米棒天线的肩边缘时,可以获得最高的光产生效率,其中结中的键合偶极表面等离子体激元模式在光谱和空间上与EDOA的纵向辐射模式耦合。此外,纳米棒表面隧道结的位置变化也强烈影响远场辐射角分布和发射光谱。数值模拟结果与实验结果吻合较好。我们的发现提供了有关结构参数对EDOA发光性能影响的基本见解,从而导致更好的设计的EDOA与高发光效率和强大的功能。
    Light emission from ultracompact electrically driven optical antennas (EDOAs) has garnered significant attention due to its terahertz modulation bandwidth. Typically, the EDOAs are fixed and nonadjustable once fabricated, thus hindering the attempts to investigate the influence of structural geometry on light emission properties. Here, we propose and demonstrate that the EDOAs can be constructed by carefully manipulating the gold-coated tips of atomic force microscopy operated in conductive mode into contact with the optical antennas covered by insulating film, where the position of the tunnel junction on the antenna surface can be controlled with high accuracy and flexibility. Taking gold nanorod antennas covered by HfO2 film as an example, we found that the highest light generation efficiency is obtained when the tunnel junction is located at the shoulder edge of the nanorod antenna, where the bonding dipolar surface plasmon mode in the junction is spectrally and spatially coupled with the longitudinal radiation mode of the EDOAs. Besides, position variation of the tunnel junction on the nanorod surface also strongly influences the far-field radiation angular distribution and emission spectrum. Numerical simulations are in good agreement with the experimental results. Our findings offer fundamental insights into the influence of structural parameters on the light emission performance of EDOAs, thus leading to better design of EDOAs with high light generation efficiency and powerful functionality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    等离子体纳米粒子能够操纵和增强深亚波长尺度的光场,导致结构和器件的不同应用在光学。尽管杂化等离子体材料由于纳米接近的组分之间的相互作用而显示出显著的光学特性,在单晶基体内可扩展地生产等离子体纳米结构以获得理想的等离子体-晶体界面仍然具有挑战性。这里,提出了一种新的方法来实现晶格内等离子体纳米粒子的有效操纵。采用超快激光驱动等离子体纳米光刻技术,在钇铝石榴石(YAG)晶体的晶格中精确定义了具有可控形貌的金属纳米颗粒。通过直接离子注入,产生了由嵌入在亚表面无定形YAG层中的纳米颗粒组成的混合等离子体材料。随后,飞秒激光脉冲引导等离子体纳米颗粒的形成和重塑从非晶层沿着光传播的方向进入单晶基质,由等离子体激元介导的激光能量沉积演化促进。通过定制共振模式和优化结构化粒子组件之间的耦合,一系列的应用,包括偏振相关的吸收和非线性,可控光致发光,并证明了结构颜色的产生。这项研究引入了一种制造具有晶格内等离子体纳米结构的先进光学材料的新方法,为多种功能光子器件的发展铺平了道路。
    Plasmonic nanoparticles enable manipulation and enhancement of light fields at deep subwavelength scales, leading to structures and devices for diverse applications in optics. Despite hybrid plasmonic materials display remarkable optical properties due to interactions between components in nanoproximity, scalable production of plasmonic nanostructures within a single-crystalline matrix to achieve an ideal plasmon-crystal interface remains challenging. Here, a novel approach is presented to realize efficient manipulation of in-lattice plasmonic nanoparticles. Employing ultrafast-laser-driven plasmonic nanolithography, metallic nanoparticles with controllable morphology are precisely defined in the crystalline lattice of yttrium aluminum garnet (YAG) crystal. Through direct ion implantation, hybrid plasmonic material composed of nanoparticles embedded in a sub-surface amorphous YAG layer is created. Subsequently, femtosecond laser pulses guide formation and reshaping of plasmonic nanoparticles from the amorphous layer into the single-crystalline matrix along direction of light propagation, facilitated by a plasmon-mediated evolution of laser energy deposition. By tailoring resonance modes and optimizing the coupling between structured particle assemblies, a range of applications including polarization-dependent absorption and nonlinearity, controllable photoluminescence, and structural color generation is demonstrated. This research introduces a new approach for fabricating advanced optical materials featuring in-lattice plasmonic nanostructures, paving the way for the development of diverse functional photonic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    手性是各种系统固有的,包括固态和波物理。磁性材料中磁矩的进动(手性运动),形成自旋波,在磁学和自旋电子学中具有各种性质和许多应用。我们证明可以在等离子体纳米螺旋阵列中产生自旋波的光学模拟。这种光波是由携带自旋和轨道角动量的扭曲螺旋本征模式之间的相互作用引起的。我们证明了这些光学自旋波在对映体纳米螺旋的连续域之间的界面处反射,形成异手性晶格,而与晶格内的波传播方向无关。光学自旋波可以应用在涉及光子自旋的技术中,从数据处理和存储到量子光学。
    Chirality is inherent to a broad range of systems, including solid-state and wave physics. The precession (chiral motion) of the magnetic moments in magnetic materials, forming spin waves, has various properties and many applications in magnetism and spintronics. We show that an optical analogue of spin waves can be generated in arrays of plasmonic nanohelices. Such optical waves arise from the interaction between twisted helix eigenmodes carrying spin and orbital angular momenta. We demonstrate that these optical spin waves are reflected at the interface between successive domains of enantiomeric nanohelices, forming a heterochiral lattice regardless of the wave propagation direction within the lattice. Optical spin waves may be applied in techniques involving photon spin, ranging from data processing and storage to quantum optics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从理论上分析了导致不同形状和尺寸的Ti3C2TxMXene薄片附近R6G分子表面增强拉曼散射##xD;(SERS)的电磁场增强机制。在SERS增强因子(EF)的COMSOL模拟中,根据实验数据,将染料分子建模为具有极化率光谱的小球体。它被证明是为 第一次,在500nm-1000nm的波长范围内,拉曼信号的增强在很大程度上是
由四极表面等离子体激元(QSP)振荡引起的MXene基板的强极化条件。我们表明,在 vis-NIR光谱范围四极SP共振,由于 增强;带间跃迁(IBT)提供105-107数量级的EF值与实验 数据一致。EF对MXene纳米颗粒(NPs)的形状和尺寸的弱敏感性被解释为
,由于QSP振荡和IBT&#xD的吸收截面对薄片几何形状的低依赖性。这揭示了一个新特征-EF对
MXene基材的几何形状的独立性,允许避免在合成过程中监测薄片的形状和大小- sis。因此,MXene薄片可有利于易于制造用于SERS 应用的通用基材。由于R6G分子的吸收光谱与这些MXene共振部分重叠,电磁SERS增强由“避雷针”和“热点”效应决定。
    The electromagnetic field enhancement mechanisms leading to surface-enhanced Raman scattering (SERS) of R6G molecules near Ti3C2TxMXene flakes of different shapes and sizes are analyzed theoretically in this paper. In COMSOL simulations for the enhancement factor (EF) of SERS, the dye molecule is modeled as a small sphere with polarizability spectrum based on experimental data. It is demonstrated, for the first time, that in the wavelength range of500 nm-1000 nm, the enhancement of Raman signals is largely conditioned by quadrupole surface plasmon (QSP) oscillations that induce a strong polarization of the MXene substrate. We show that the vis-NIR spectral range quadrupole SP resonances are strengthened due to interband transitions (IBTs), which provide EF values of the order of 105-107in agreement with experimental data. The weak sensitivity of the EF to the shape and size of MXene nanoparticles (NPs) is interpreted as a consequence of the low dependence of the absorption cross-section of QSP oscillations and IBT on the geometry of the flakes. This reveals a new feature: the independence of EF on the geometry of MXene substrates, which allows to avoid the monitoring of the shape and size of flakes during their synthesis. Thus, MXene flakes can be advantageous for the easy manufacturing of universal substrates for SERS applications. The electromagnetic SERS enhancement is determined by the \'lightning rod\' and \'hot-spot\' effects due to the partial overlapping of the absorption spectrum of the R6G molecule with these MXene resonances.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结合电化学(EC)和等离子体生物传感器方法的想法是近三十年前提出的,电化学-等离子体(EC-P)生物传感器的潜力一直被强调。尽管如此,到目前为止,EC-P生物传感器在分析中的使用相当有限,并且继续寻找EC-P方法的独特应用。在本文中,我们回顾了EC-P生物传感器领域的进展,并讨论了它们可以提供的功能和益处。此外,我们确定了EC-P生物传感器开发的主要挑战以及阻止EC-P生物传感器更广泛使用的局限性。最后,我们回顾了EC-P生物传感器在生物分子研究和定量中的应用,以及生物分子和细胞过程的研究。
    The idea of combining electrochemical (EC) and plasmonic biosensor methods was introduced almost thirty years ago and the potential of electrochemical-plasmonic (EC-P) biosensors has been highlighted ever since. Despite that, the use of EC-P biosensors in analytics has been rather limited so far and the search for unique applications of the EC-P method continues. In this paper, we review the advances in the field of EC-P biosensors and discuss the features and benefits they can provide. In addition, we identify the main challenges for the development of EC-P biosensors and the limitations that prevent EC-P biosensors from more widespread use. Finally, we review applications of EC-P biosensors for the investigation and quantification of biomolecules, and for the study of biomolecular and cellular processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项工作中,通过有限元方法(FEM)对基于金属-绝缘体-金属(MIM)波导的等离子体传感器进行了数值研究。填充有PDMS聚合物的谐振腔侧耦合到MIM总线波导。所提出的器件的灵敏度为〜-0.44nm/°C,可以通过在腔的中心嵌入金属纳米块的周期阵列来进一步提高至〜0.63nm/°C。我们理解存在许多高度有吸引力和敏感的等离子体传感器设计,然而,在探索这些纳米级波导的光耦合机制方面存在显着差距。因此,我们介绍了一种有吸引力的方法:为等离子体芯片设计的正交模式耦合器,利用基于MIM波导的传感器。对于1450-1650nm的宽波长范围,包括硅耦合器和MIM波导的混合系统的优化传输在-1.73dB至-2.93dB的范围内。这些耦合器的巧妙集成不仅使我们的等离子体传感器与众不同,而且使其成为广泛的传感应用的非常有前途的解决方案。
    In this work, a plasmonic sensor based on metal-insulator-metal (MIM) waveguide for temperature sensing application is numerically investigated via finite element method (FEM). The resonant cavity filled with PDMS polymer is side-coupled to the MIM bus waveguide. The sensitivity of the proposed device is ~ - 0.44 nm/°C which can be further enhanced to - 0.63 nm/°C by embedding a period array of metallic nanoblocks in the center of the cavity. We comprehend the existence of numerous highly attractive and sensitive plasmonic sensor designs, yet a notable gap exists in the exploration of light coupling mechanisms to these nanoscale waveguides. Consequently, we introduced an attractive approach: orthogonal mode couplers designed for plasmonic chips, which leverage MIM waveguide-based sensors. The optimized transmission of the hybrid system including silicon couplers and MIM waveguide is in the range of - 1.73 dB to - 2.93 dB for a broad wavelength range of 1450-1650 nm. The skillful integration of these couplers not only distinguishes our plasmonic sensor but also positions it as a highly promising solution for an extensive array of sensing applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    手性传感在生物学和制药工业领域至关重要。许多天然存在的生物分子,即,氨基酸,糖,糖和核苷酸,本质上是手性的。它们的对映异构体与手性药物的药理作用密切相关。由于极弱的手性光-物质相互作用,光学频率的手性传感具有挑战性,特别是当涉及痕量分子时。纳米光子平台允许手性分子和光之间更强的相互作用以增强手性传感。这里,我们回顾了纳米光子增强手性传感的最新进展,重点关注电介质和等离子体结构中产生的超手性近场和增强的圆二色性(CD)光谱。此外,讨论了手性传感在生物医学领域的最新应用,包括疑难疾病的检测和治疗,即,老年痴呆症,糖尿病,和癌症。
    Chiral sensing is crucial in the fields of biology and the pharmaceutical industry. Many naturally occurring biomolecules, i.e., amino acids, sugars, and nucleotides, are inherently chiral. Their enantiomers are strongly associated with the pharmacological effects of chiral drugs. Owing to the extremely weak chiral light-matter interactions, chiral sensing at an optical frequency is challenging, especially when trace amounts of molecules are involved. The nanophotonic platform allows for a stronger interaction between the chiral molecules and light to enhance chiral sensing. Here, we review the recent progress in nanophotonic-enhanced chiral sensing, with a focus on the superchiral near-field and enhanced circular dichroism (CD) spectroscopy generated in both the dielectric and in plasmonic structures. In addition, the recent applications of chiral sensing in biomedical fields are discussed, including the detection and treatment of difficult diseases, i.e., Alzheimer\'s disease, diabetes, and cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过等离子体共振,银和金纳米粒子可以在可见电磁波谱的不同区域内选择性地反向散射光。我们设计了一种等离子体膜技术,该技术利用金和银纳米颗粒来增强微藻光合活动所需波长的光。将纳米颗粒嵌入聚合物基质中以制造毫米薄的等离子体薄膜,该薄膜可用作微藻光生物反应器中的滤光器。用微藻进行的实验证明,微藻的生长和光合色素的产量可以增加多达50%和78%,分别,通过使用这些等离子体膜滤光器。这项工作提供了一种可扩展的策略,通过等离子体纳米粒子的辐照控制,从微藻中有效生产特种化学品和生物燃料。
    Through plasmon resonance, silver and gold nanoparticles can selectively backscatter light within different regions of the visible electromagnetic spectrum. We engineered a plasmonic film technology that utilizes gold and silver nanoparticles to enhance light at the necessary wavelengths for microalgal photosynthetic activities. Nanoparticles were embedded in a polymeric matrix to fabricate millimeter-thin plasmonic films that can be used as light filters in microalgal photobioreactors. Experiments conducted with microalga Chlamydomonas reinhardtii proved that microalgal growth and photosynthetic pigment production can be increased by up to 50% and 78%, respectively, by using these plasmonic film light filters. This work provides a scalable strategy for the efficient production of specialty chemicals and biofuels from microalgae through irradiation control with plasmonic nanoparticles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光的角动量控制是下一代纳米光器件和光通信的关键技术,包括量子通信和编码。我们提出了一种方法,通过相干激发跃迁辐射和通过表面等离子体激元从孔中散射的光,使用电子束从金属膜中的圆孔可控地产生圆偏振光。全偏振四维阴极发光映射证实了圆偏振光的产生,其中同时获得角度分辨光谱。获得的强度和斯托克斯图显示出清晰的干涉条纹以及几乎完全圆偏振光的产生,并且可以通过电子束位置控制奇偶校验。通过将这种方法应用于三孔系统,在三个孔的中间可以看到具有相位奇点的涡旋场。
    Control of the angular momentum of light is a key technology for next-generation nano-optical devices and optical communications, including quantum communication and encoding. We propose an approach to controllably generate circularly polarized light from a circular hole in a metal film using an electron beam by coherently exciting transition radiation and light scattering from the hole through surface plasmon polaritons. The circularly polarized light generation is confirmed by fully polarimetric four-dimensional cathodoluminescence mapping, where angle-resolved spectra are simultaneously obtained. The obtained intensity and Stokes maps show clear interference fringes as well as almost fully circularly polarized light generation with controllable parities by the electron beam position. By applying this approach to a three-hole system, a vortex field with a phase singularity is visualized in the middle of three holes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在过去的十年里,钙钛矿太阳能电池(PSC)的功率转换效率(PCE)经历了显著的提升,从2009年的3.8%飙升至2023年的26.1%。许多最近用于改善PSC性能的方法采用纳米光子技术,从光收集和热管理到电荷载流子动力学的操纵。等离子体纳米粒子(NP)和阵列介电纳米结构已被用于定制光吸收,散射,和转换,以及PSC内的散热,以提高其PCE和操作稳定性。在这次审查中,我们从一个简洁的介绍开始,通过关注光和表面等离子体或电介质光子结构之间的纳米级相互作用来定义纳米光子学的领域。然后,我们详细阐述了利用共振增强的光-物质相互作用来增强PCE和PSC从光捕获的稳定性的主要策略,承运人运输和热管理观点,并讨论由此产生的实际应用,如半透明光伏(PV),有色PSC,和智能钙钛矿窗户。最后,我们回顾了PSC中最先进的纳米光子范例,并强调这些方法在改善PSC集成建筑的美学效果和节能特性方面的好处。本文受版权保护。保留所有权利。
    Over the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has experienced a remarkable ascent, soaring from 3.8% in 2009 to a remarkable record of 26.1% in 2023. Many recent approaches for improving PSC performance employ nanophotonic technologies, from light harvesting and thermal management to the manipulation of charge carrier dynamics. Plasmonic nanoparticles and arrayed dielectric nanostructures have been applied to tailor the light absorption, scattering, and conversion, as well as the heat dissipation within PSCs to improve their PCE and operational stability. In this review, it is begin with a concise introduction to define the realm of nanophotonics by focusing on the nanoscale interactions between light and surface plasmons or dielectric photonic structures. Prevailing strategies that utilize resonance-enhanced light-matter interactions for boosting the PCE and stability of PSCs from light trapping, carrier transportation, and thermal management perspectives are then elaborated, and the resultant practical applications, such as semitransparent photovoltaics, colored PSCs, and smart perovskite windows are discussed. Finally, the state-of-the-art nanophotonic paradigms in PSCs are reviewed, and the benefits of these approaches in improving the aesthetic effects and energy-saving character of PSC-integrated buildings are highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号