关键词: hybrid plasmonic materials optical forces photoluminescence surface plasmons third‐order nonlinearity

来  源:   DOI:10.1002/advs.202402840

Abstract:
Plasmonic nanoparticles enable manipulation and enhancement of light fields at deep subwavelength scales, leading to structures and devices for diverse applications in optics. Despite hybrid plasmonic materials display remarkable optical properties due to interactions between components in nanoproximity, scalable production of plasmonic nanostructures within a single-crystalline matrix to achieve an ideal plasmon-crystal interface remains challenging. Here, a novel approach is presented to realize efficient manipulation of in-lattice plasmonic nanoparticles. Employing ultrafast-laser-driven plasmonic nanolithography, metallic nanoparticles with controllable morphology are precisely defined in the crystalline lattice of yttrium aluminum garnet (YAG) crystal. Through direct ion implantation, hybrid plasmonic material composed of nanoparticles embedded in a sub-surface amorphous YAG layer is created. Subsequently, femtosecond laser pulses guide formation and reshaping of plasmonic nanoparticles from the amorphous layer into the single-crystalline matrix along direction of light propagation, facilitated by a plasmon-mediated evolution of laser energy deposition. By tailoring resonance modes and optimizing the coupling between structured particle assemblies, a range of applications including polarization-dependent absorption and nonlinearity, controllable photoluminescence, and structural color generation is demonstrated. This research introduces a new approach for fabricating advanced optical materials featuring in-lattice plasmonic nanostructures, paving the way for the development of diverse functional photonic devices.
摘要:
等离子体纳米粒子能够操纵和增强深亚波长尺度的光场,导致结构和器件的不同应用在光学。尽管杂化等离子体材料由于纳米接近的组分之间的相互作用而显示出显著的光学特性,在单晶基体内可扩展地生产等离子体纳米结构以获得理想的等离子体-晶体界面仍然具有挑战性。这里,提出了一种新的方法来实现晶格内等离子体纳米粒子的有效操纵。采用超快激光驱动等离子体纳米光刻技术,在钇铝石榴石(YAG)晶体的晶格中精确定义了具有可控形貌的金属纳米颗粒。通过直接离子注入,产生了由嵌入在亚表面无定形YAG层中的纳米颗粒组成的混合等离子体材料。随后,飞秒激光脉冲引导等离子体纳米颗粒的形成和重塑从非晶层沿着光传播的方向进入单晶基质,由等离子体激元介导的激光能量沉积演化促进。通过定制共振模式和优化结构化粒子组件之间的耦合,一系列的应用,包括偏振相关的吸收和非线性,可控光致发光,并证明了结构颜色的产生。这项研究引入了一种制造具有晶格内等离子体纳米结构的先进光学材料的新方法,为多种功能光子器件的发展铺平了道路。
公众号